30 research outputs found
Inhibition of osteoclast differentiation and bone resorption by N-methylpyrrolidone
Regulation of RANKL (receptor activator of nuclear factor κB ligand)-induced osteoclast differentiation is of current interest in the development of antiresorptive agents. Osteoclasts are multinucleated cells that play a crucial role in bone resorption. In this study, we investigated the effects of N-methylpyrrolidone (NMP) on the regulation of RANKL-induced osteoclastogenesis. NMP inhibited RANKL-induced tartrate-resistant acid phosphatase activity and the formation of tartrate-resistant acid phosphatase-positive multinucleated cells. The RANKL-induced expression of NFATc1 (nuclear factor of activated T cells, cytoplasmic 1) and c-Fos, which are key transcription factors for osteoclastogenesis, was also reduced by treatment with NMP. Furthermore, NMP induced disruption of the actin rings and decreased the mRNAs of cathepsin K and MMP-9 (matrix metalloproteinase-9), both involved in bone resorption. Taken together, these results suggest that NMP inhibits osteoclast differentiation and attenuates bone resorption. Therefore, NMP could prove useful for the treatment of osteoporosis or other bone diseases associated with excessive bone resorption
Early B-cell Factor gene association with multiple sclerosis in the Spanish population
BACKGROUND: The etiology of multiple sclerosis (MS) is at present not fully elucidated, although it is considered to result from the interaction of environmental and genetic susceptibility factors. In this work we aimed at testing the Early B-cell Factor (EBF1) gene as a functional and positional candidate risk factor for this neurological disease. Axonal damage is a hallmark for multiple sclerosis clinical disability and EBF plays an evolutionarily conserved role in the expression of proteins essential for axonal pathfinding. Failure of B-cell differentiation was found in EBF-deficient mice and involvement of B-lymphocytes in MS has been suggested from their presence in cerebrospinal fluid and lesions of patients. METHODS: The role of the EBF1 gene in multiple sclerosis susceptibility was analyzed by performing a case-control study with 356 multiple sclerosis patients and 540 ethnically matched controls comparing the EBF1 polymorphism rs1368297 and the microsatellite D5S2038. RESULTS: Significant association of an EBF1-intronic polymorphism (rs1368297, A vs. T: p = 0.02; OR = 1.26 and AA vs. [TA+TT]: p = 0.02; OR = 1.39) was discovered. This association was even stronger after stratification for the well-established risk factor of multiple sclerosis in the Major Histocompatibility Complex, DRB1*1501 (AA vs. [TA+TT]: p = 0.005; OR = 1.78). A trend for association in the case-control study of another EBF1 marker, the allele 5 of the very informative microsatellite D5S2038, was corroborated by Transmission Disequilibrium Test of 53 trios (p = 0.03). CONCLUSION: Our data support EBF1 gene association with MS pathogenesis in the Spanish white population. Two genetic markers within the EBF1 gene have been found associated with this neurological disease, indicative either of their causative role or that of some other polymorphism in linkage disequilibrium with them
Transcriptional Regulation of BMP2 Expression by the PTH-CREB Signaling Pathway in Osteoblasts
Intermittent application of parathyroid hormone (PTH) has well established anabolic effects on bone mass in rodents and humans. Although transcriptional mechanisms responsible for these effects are not fully understood, it is recognized that transcriptional factor cAMP response element binding protein (CREB) mediates PTH signaling in osteoblasts, and that there is a communication between the PTH-CREB pathway and the BMP2 signaling pathway, which is important for osteoblast differentiation and bone formations. These findings, in conjunction with putative cAMP response elements (CREs) in the BMP2 promoter, led us to hypothesize that the PTH-CREB pathway could be a positive regulator of BMP2 transcription in osteoblasts. To test this hypothesis, we first demonstrated that PTH signaling activated CREB by phosphorylation in osteoblasts, and that both PTH and CREB were capable of promoting osteoblastic differentiation of primary mouse osteoblast cells and multiple rodent osteoblast cell lines. Importantly, we found that the PTH-CREB signaling pathway functioned as an effective activator of BMP2 expression, as pharmacologic and genetic modulation of PTH-CREB activity significantly affected BMP2 expression levels in these cells. Lastly, through multiple promoter assays, including promoter reporter deletion, mutation, chromatin immunoprecipitation (ChIP), and electrophoretic mobility shift assay (EMSA), we identified a specific CRE in the BMP2 promoter which is responsible for CREB transactivation of the BMP2 gene in osteoblasts. Together, these results demonstrate that the anabolic function of PTH signaling in bone is mediated, at least in part, by CREB transactivation of BMP2 expression in osteoblasts
Histone deacetylase 1 and 2 differentially regulate apoptosis by opposing effects on extracellular signal-regulated kinase 1/2
Histone deacetylases (HDACs) are epigenetic regulators that are important for the control of various pathophysiological events. We found that HDAC inhibitors completely abolished transforming growth factor-β1 (TGF-β1)-induced apoptosis in AML-12 and primary mouse hepatocytes. Expression of a dominant-negative mutant of HDAC1 or downregulation of HDAC1 by RNAi both suppressed TGF-β1-induced apoptosis. In addition, overexpression of HDAC1 enhanced TGF-β1-induced apoptosis, and the rescue of HDAC1 expression in HDAC1 RNAi cells restored the apoptotic response of cells to TGF-β1. These data indicate that HDAC1 functions as a proapoptotic factor in TGF-β1-induced apoptosis. In contrast, downregulation of HDAC2 by RNAi increased spontaneous apoptosis and markedly enhanced TGF-β1-induced apoptosis, suggesting that HDAC2 has a reciprocal role in controlling cell survival. Furthermore, inhibition of extracellular signal-regulated kinase 1/2 (ERK1/2) by MEK1 inhibitor PD98059 or expression of a kinase-dead mutant of MEK1 restored the apoptotic response to TGF-β1 in HDAC1 RNAi cells. Strikingly, HDAC2 RNAi caused an inhibition of ERK1/2, and the spontaneous apoptosis can be abolished by reactivation of ERK1/2. Taken together, our data demonstrate that HDAC1 and 2 reciprocally affect cell viability by differential regulation of ERK1/2; these observations provide insight into the roles and potential mechanisms of HDAC1 and 2 in apoptosis
Influence of N-methyl pyrrolidone on the activity of the pulp-dentine complex and bone integrity during osteoporosis
AIM To analyze the effect of systemic application of N-methyl pyrrolidone (NMP) on the pulp-dentine complex and on the jawbone of ovariectomized rats. METHOD Female Sprague-Dawley rats were randomly divided into a sham-operated group (Sham n=6) and an estrogen depletion by ovariectomy (OVX n=12) group. In 6 of the ovariectomized animals N-methyl pyrrolidone (NMP) in phosphate-buffered saline (PBS) was administered systemically weekly by intraperitoneal injection (i.p.); the other 6 were injected with PBS (Veh). After 15 weeks of injections the jaw bones were collected and pulps extracted from the incisors teeth. Histology was used to determine pre-dentine thickness in teeth and radiography to determine alveolar bone mass. Immunohistological staining and RT-PCR were performed to verify the presence and localization of the odontoblast specific dentine sialoprotein and to quantify its expression in the dentine pulp complex. Mandibular cortical width and mandibular height was evaluated by means of X-ray analysis. Statistical analysis was performed with analysis of variance (ANOVA). RESULTS Both pre-dentine (P=0.029) and alveolar bone structures (P=0.049) were significantly reduced due to estrogen deficiency in OVX Veh and OVX NMP treatment normalized these parameters to the Sham level. DSPP expression in OVX NMP animals was significantly higher (P=0.046) than in OVX Veh. X-ray analysis confirmed that ovariectomy significantly reduced the mandibular cortical width in the OVX Veh group compared to the Sham Veh and OVX NMP (P=0.020). CONCLUSION N-methyl pyrrolidone (NMP) had a remarkable anti-osteoporotic ability preserving the activity in the pulp-dentine complex and preventing jawbone loss. These effects make NMP a promising candidate for the preservation of the activity of the pulp-dentine complex and the jawbone thickness in postmenopausal females. This article is protected by copyright. All rights reserved
Enhanced osteoblastic activity and bone regeneration using surface-modified porous bioactive glass scaffolds
The potential use as a bone substitute material of a three-dimensional bioactive glass fiber scaffold composed of Na(2)O-K(2)O-MgO-CaO-B(2)O(3)-P(2)O(5)-SiO(2) (BG1) was investigated in this work. Scaffolds were pre-treated with simulated body fluid (SBF) to promote the formation of two different bone-like apatite layers on their surfaces. The topography and roughness of the deposited layers were assessed by scanning electron microscopy (SEM), while the chemical composition and structure using X-ray photoelectron spectroscopy (XPS) and Raman spectroscopy, respectively. Based on surface analysis, the bioactive glass surfaces were ranked from smoothest to roughest: 0 SBF (untreated), 1x SBF and 2x SBF. A calcium-deficient carbonated hydroxyapatite (HCA) layer was present on both SBF-treated scaffolds, with higher number and larger bone-like apatite nodule formation in the 2x SBF case. MC3T3-E1 preosteoblasts showed a more flattened morphology and higher cell proliferation on the nontreated scaffolds; whereas, cells were more elongated and had higher osteoblastic activity on SBF-treated samples. In vivo results in a rabbit calvarial bone defect model showed enhanced bone formation with SBF pretreated scaffolds, compared with untreated ones, commercially available Perioglass particles and empty defects. Our findings demonstrate that the formation of a rough HCA layer on bioactive glass porous scaffolds enhanced preosteoblast maturation in vitro, as well as bone formation in vivo
Bone augmentation using a synthetic hydroxyapatite/silica oxide-based and a xenogenic hydroxyapatite-based bone substitute materials with and without recombinant human bone morphogenetic protein-2
AIM: To test whether or not bone regeneration using deproteinized bovine bone mineral (DBBM) is comparable to hydroxyapatite/silica oxide (HA/SiO) and to test the effect of recombinant human bone morphogenetic protein-2 (rhBMP-2) as an adjunct to DBBM for localized bone regeneration.
MATERIALS AND METHODS: In each of the 10 rabbits, 4 titanium cylinders were placed on the external cortical plates of their calvaria. Four treatment modalities were randomly allocated: (i) empty, (ii) HA/SiO, (iii) DBBM, and (iv) DBBM plus rhBMP-2 (DBBM/BMP). The animals were sacrificed at week 8. Descriptive histology and histomorphometric assessment using a superimposed test grid of points and cycloids were performed.
RESULTS: The mean number of points of the test grid coinciding with bone within the cylinder reached 124 ± 35 bone points for empty controls, 92 ± 40 bone points for DBBM, 98 ± 44 bone points for synthetic HA/SiO, and 146 ± 34 bone points DBBM/BMP. The P-value for DBBM with and without BMP reached a borderline statistical significance of 0.051. However, the area of bone regeneration within the cylinders peaked for DBBM/BMP and was statistically significantly higher compared with empty cylinders (P < 0.05). The bone-to-bone substitute contact ranged between 32.9% ± 21.7 for DBBM, 39.6 ± 18.4% for HA/SiO, and 57.8% ± 10.2 for DBBM/BMP. The differences between DBBM/BMP and controls (DBBM, HA/SiO) were statistically significant (P < 0.05).
CONCLUSIONS: DBBM and HA/SiO rendered comparable amounts of bone regeneration. The addition of rhBMP-2 to DBBM resulted in more favorable outcomes with respect to the area of bone regeneration and to bone-to-implant contact, thereby indicating the potential of this growth factor to enhance bone regeneration within this animal model
N-methyl pyrrolidone as a potent bone morphogenetic protein enhancer for bone tissue regeneration
In medicine, N-methyl pyrrolidone (NMP) has a long track record as a constituent in medical devices approved by the Food and Drug Administration and thus can be considered as a safe and biologically inactive small chemical. In the present study, we report on the newly discovered pharmaceutical property of NMP in enhancing bone regeneration in a rabbit calvarial defect model in vivo. At the cellular level, the pharmaceutical effect of NMP was confirmed, in particular, in combination with bone morphogenetic protein (BMP)-2, because NMP increased early and late markers for maturation of preosteoblasts and human bone marrow-derived stem cells in vitro. When we used the multipotent cell line C2C12 without autologous BMP expression, NMP alone had no effect on alkaline phosphatase activity, a marker for osteogenic transdifferentiation. Nevertheless, in combination with low BMP-2 doses, alkaline phosphatase activity was more than eight times as great. Thus, the pharmaceutical NMP mode of action is that of an enhancer of BMP activity. The dependency of the effects of NMP on BMP was confirmed in preosteoblasts because noggin, an extracellular BMP inhibitor, suppressed NMP-induced increases in early markers for osteoblast maturation in vitro. At the molecular level, NMP was shown to have no effect on the binding of BMP-2 to the ectodomain of the high-affinity BMP receptor IA. However, NMP further increased the phosphorylation of p38 and Smad1,5,8 induced by BMP-2. Thus, the small chemical NMP enhances BMP activity by increasing the kinase activity of the BMP receptor complex for Smad1,5,8 and p38 and could be employed as a potent drug for bone tissue regeneration and engineering. © Copyright 2009, Mary Ann Liebert, Inc.link_to_subscribed_fulltex
Regulation of human COL2A1 gene expression in chondrocytes: identification of C-KROX responsive elements and modulation by phenotype alteration
International audienc