174 research outputs found

    The Use of Adipose Tissue-Derived Progenitors in Bone Tissue Engineering - a Review

    Full text link
    2500 years ago, Hippocrates realized that bone can heal without scaring. The natural healing potential of bone is, however, restricted to small defects. Extended bone defects caused by trauma or during tumor resections still pose a huge problem in orthopedics and cranio-maxillofacial surgery. Bone tissue engineering strategies using stem cells, growth factors, and scaffolds could overcome the problems with the treatment of extended bone defects. In this review, we give a short overview on bone tissue engineering with emphasis on the use of adipose tissue-derived stem cells and small molecules

    Osteoconductivity of bone substitutes with filament-based microarchitectures: Influence of directionality, filament dimension, and distance

    Full text link
    Additive manufacturing can be applied to produce personalized bone substitutes. At present, the major three-dimensional (3D) printing methodology relies on fila­ment extrusion. In bioprinting, the extruded filament consists mainly of hydrogels, in which growth factors and cells are embedded. In this study, we used a lithogra­phy-based 3D printing methodology to mimic filament-based microarchitectures by varying the filament dimension and the distance between the filaments. In the first set of scaffolds, all filaments were aligned toward bone ingrowth direction. In a second set of scaffolds, which were derived from the identical microarchitecture but tilted by 90°, only 50% of the filaments were in line with the bone ingrowth direction. Testing of all tricalcium phosphate-based constructs for osteoconduction and bone regeneration was performed in a rabbit calvarial defect model. The results revealed that if all filaments are in line with the direction of bone ingrowth, filament size and distance (0.40–1.25 mm) had no significant influence on defect bridging. Howev­er, with 50% of filaments aligned, osteoconductivity declined significantly with an increase in filament dimension and distance. Therefore, for filament-based 3D- or bio-printed bone substitutes, the distance between the filaments should be 0.40 to 0.50 mm irrespective of the direction of bone ingrowth or up to 0.83 mm if perfectly aligned to it

    3D-Printed HA-Based Scaffolds for Bone Regeneration: Microporosity, Osteoconduction and Osteoclastic Resorption

    Full text link
    Additive manufacturing enables the realization of the macro- and microarchitecture of bone substitutes. The macroarchitecture is determined by the bone defect and its shape makes the implant patient specific. The preset distribution of the 3D-printed material in the macroarchitecture defines the microarchitecture. At the lower scale, the nanoarchitecture of 3D-printed scaffolds is dependent on the post-processing methodology such as the sintering temperature. However, the role of microarchitecture and nanoarchitecture of scaffolds for osteoconduction is still elusive. To address these aspects in more detail, we produced lithography-based osteoconductive scaffolds from hydroxyapatite (HA) of identical macro- and microarchitecture and varied their nanoarchitecture, such as microporosity, by increasing the maximum sintering temperatures from 1100 to 1400 °C. The different scaffold types were characterized for microporosity, compression strength, and nanoarchitecture. The in vivo results, based on a rabbit calvarial defect model showed that bony ingrowth, as a measure of osteoconduction, was independent from scaffold's microporosity. The same applies to in vitro osteoclastic resorbability, since on all tested scaffold types, osteoclasts formed on their surfaces and resorption pits upon exposure to mature osteoclasts were visible. Thus, for wide-open porous HA-based scaffolds, a low degree of microporosity and high mechanical strength yield optimal osteoconduction and creeping substitution. Based on our study, non-unions, the major complication during demanding bone regeneration procedures, could be prevented

    Functionalization of Ceramic Scaffolds with Exosomes from Bone Marrow Mesenchymal Stromal Cells for Bone Tissue Engineering

    Get PDF
    The functionalization of bone substitutes with exosomes appears to be a promising technique to enhance bone tissue formation. This study investigates the potential of exosomes derived from bone marrow mesenchymal stromal cells (BMSCs) to improve bone healing and bone augmentation when incorporated into wide open-porous 3D-printed ceramic Gyroid scaffolds. We demonstrated the multipotent characteristics of BMSCs and characterized the extracted exosomes using nanoparticle tracking analysis and proteomic profiling. Through cell culture experimentation, we demonstrated that BMSC-derived exosomes possess the ability to attract cells and significantly facilitate their differentiation into the osteogenic lineage. Furthermore, we observed that scaffold architecture influences exosome release kinetics, with Gyroid scaffolds exhibiting slower release rates compared to Lattice scaffolds. Nevertheless, in vivo implantation did not show increased bone ingrowth in scaffolds loaded with exosomes, suggesting that the scaffold microarchitecture and material were already optimized for osteoconduction and bone augmentation. These findings highlight the lack of understanding about the optimal delivery of exosomes for osteoconduction and bone augmentation by advanced ceramic scaffolds

    TPMS Microarchitectures for Vertical Bone Augmentation and Osteoconduction: An In Vivo Study

    Get PDF
    Triply periodic minimal surface microarchitectures (TPMS) were developed by mathematicians and evolved in all kingdoms of living organisms. Renowned for their lightweight yet robust attributes, TPMS structures find application in diverse fields, such as the construction of satellites, aircrafts, and electric vehicles. Moreover, these microarchitectures, despite their intricate geometric patterns, demonstrate potential for application as bone substitutes, despite the inherent gothic style of natural bone microarchitecture. Here, we produced three TPMS microarchitectures, D-diamond, G-gyroid, and P-primitive, by 3D printing from hydroxyapatite. We explored their mechanical characterization and, further, implanted them to study their bone augmentation and osteoconduction potential. In terms of strength, the D-diamond and G-gyroid performed significantly better than the P-primitive. In a calvarial defect model and a calvarial bone augmentation model, where osteoconduction is determined as the extent of bony bridging of the defect and bone augmentation as the maximal vertical bone ingrowth, the G-gyroid performed significantly better than the P-primitive. No significant difference in performance was observed between the G-gyroid and D-diamond. Since, in real life, the treatment of bone deficiencies in patients comprises elements of defect bridging and bone augmentation, ceramic scaffolds with D-diamond and G-gyroid microarchitectures appear as the best choice for a TPMS-based scaffold in bone tissue engineering

    Influence of Scaffold Microarchitecture on Angiogenesis and Regulation of Cell Differentiation during the Early Phase of Bone Healing: A Transcriptomics and Histological Analysis

    Full text link
    The early phase of bone healing is a complex and poorly understood process. With additive manufacturing, we can generate a specific and customizable library of bone substitutes to explore this phase. In this study, we produced tricalcium phosphate-based scaffolds with microarchitectures composed of filaments of 0.50 mm in diameter, named Fil050G, and 1.25 mm named Fil125G, respectively. The implants were removed after only 10 days in vivo followed by RNA sequencing (RNAseq) and histological analysis. RNAseq results revealed upregulation of adaptive immune response, regulation of cell adhesion, and cell migration-related genes in both of our two constructs. However, significant overexpression of genes linked to angiogenesis, regulation of cell differentiation, ossification, and bone development was observed solely in Fil050G scaffolds. Moreover, quantitative immunohistochemistry of structures positive for laminin revealed a significantly higher number of blood vessels in Fil050G samples. Furthermore, µCT detected a higher amount of mineralized tissue in Fil050G samples suggesting a superior osteoconductive potential. Hence, different filament diameters and distances in bone substitutes significantly influence angiogenesis and regulation of cell differentiation involved in the early phase of bone regeneration, which precedes osteoconductivity and bony bridging seen in later phases and as consequence, impacts the overall clinical outcome

    Stimulating effect of diacerein on TGF-β1 and β2 expression in articular chondrocytes cultured with and without interleukin-1

    Get PDF
    AbstractObjective: Diacetylrhein or diacerein has shown efficacy in the treatment of both major forms of osteoarthritis (OA), coxarthrosis as well as gonarthrosis, improving clinical symptoms of the disease (pain reduction and algo-functional index). Both in-vitro and animal models studies suggest that diacerein may have also disease-modifying effects. The drug exerts inhibitory effects on interleukin-1-induced expression of cartilage degrading enzymes. However, its mechanism of action is not completely understood. In view of the role that could play the transforming growth factor (TGF)-β system in the repair potentialities of OA cartilage, we studied the effect of diacerein on the expression of TGF-β isoforms 1, 2 and 3 and that of their receptor types I and II in cultured bovine chondrocytes.Methods: Cultured bovine articular chondrocytes were treated with 10−5mdiacerein, 10ng/ml IL-1β or the combination diacerein+interleukin (IL)-1, and the expression of both TGF-β isoforms 1, 2 and 3 and that of their receptors TβR-I and TβR-II was determined by Northern-blot and reverse transcriptase-polymerase chain reaction (RT-PCR). Cell transfections of cDNA constructs containing sequences of the 5′-upstream region of TGF-β1 promoter were also performed to determine their transcriptional activity in diacerein-treated cultures.Results: The data indicated that diacerein enhances the expression of TGF-β1 and TGF-β2. This effect was also found in the presence of IL-1, albeit with smaller intensity. In contrast, the levels of TGF-β3 and receptors I and II remained unaffected or slighty modified by the compound. Treatment of cells transiently transfected with TGF-β1 promoter constructs suggested that the stimulating effect on TGF-β1 expression is mediated by the region −1038 to −1132base pars.Conclusion: The results suggest that diacerein effects on matrix synthesis and turn-over previously reported in cultured articular chondrocytes might be explained in part by the ability of the drug to enhance TGF-β1 and TGF-β2 expression in these cells. This mechanism of action may account for the potential disease-modifying properties of diacerein and might give clues as to how future anti-osteoarthritic drugs should be designed

    Inhibition of osteoclast differentiation and bone resorption by N-methylpyrrolidone

    Full text link
    Regulation of RANKL (receptor activator of nuclear factor κB ligand)-induced osteoclast differentiation is of current interest in the development of antiresorptive agents. Osteoclasts are multinucleated cells that play a crucial role in bone resorption. In this study, we investigated the effects of N-methylpyrrolidone (NMP) on the regulation of RANKL-induced osteoclastogenesis. NMP inhibited RANKL-induced tartrate-resistant acid phosphatase activity and the formation of tartrate-resistant acid phosphatase-positive multinucleated cells. The RANKL-induced expression of NFATc1 (nuclear factor of activated T cells, cytoplasmic 1) and c-Fos, which are key transcription factors for osteoclastogenesis, was also reduced by treatment with NMP. Furthermore, NMP induced disruption of the actin rings and decreased the mRNAs of cathepsin K and MMP-9 (matrix metalloproteinase-9), both involved in bone resorption. Taken together, these results suggest that NMP inhibits osteoclast differentiation and attenuates bone resorption. Therefore, NMP could prove useful for the treatment of osteoporosis or other bone diseases associated with excessive bone resorption
    • …
    corecore