10 research outputs found

    Biophysical phenotypes of SCN5A mutations causing long QT and Brugada syndromes

    Get PDF
    AbstractLong QT and Brugada syndromes are two hereditary cardiac diseases. Brugada syndrome has so far been associated with only one gene, SCN5A, which encodes the cardiac sodium channel. However, in long QT syndrome (LQTS) at least six genes, including the SCN5A, are implicated. The substitution (D1790G) causes LQTS and the insertion (D1795) induces both LQTS and Brugada syndromes in carrier patients. hH1/insD1795 and hH1/D1790G mutant channels were expressed in the tsA201 human cell line and characterized using the patch clamp technique in whole-cell configuration. Our data revealed a persistent inward sodium current of about 6% at −30 mV for both D1790G and insD1795, and a reduction of 62% of channel expression for the insD1795. Moreover, a shift of steady-state inactivation curve in both mutants was also observed. Our findings uphold the idea that LQT3 is related to a persistent sodium current whereas reduction in the expression level of cardiac sodium channels is one of the biophysical characteristics of Brugada syndrome

    Protein kinase C activation inhibits Ca v

    No full text

    Localization and modulation of α 1D

    No full text

    Combined effects of reduced connexin 43, depressed active generator properties and energetic stress on conduction disturbances in canine failing myocardium.

    No full text
    To show that reductions in connexin43 (Cx43) can contribute, in association with electrophysiological alterations identified from unipolar recordings, to conduction disturbances in a realistic model of heart failure, canines were subjected to chronic rapid pacing (240/min for 4 weeks) and progressive occlusion of the left coronary circumflex artery (LCx) by an ameroid constrictor. Alterations identified from 191 epicardial recordings included abrupt activation delay, functional block, ST segment potential elevation, and reduced maximum negative slope (-dV/dt (max)). The LCx territory was divided into apical areas with depressed conduction velocity (LCx1: 0.06 +/- 0.04 m/s, mean +/- SD) and basal areas with relatively preserved conduction (LCx2: 0.28 +/- 0.01 m/s). Subepicardial Cx43 immunoblot measurements (percent of corresponding healthy heart measurements) were reduced in LCx1 ( approximately 40%) and LCx2 ( approximately 60%). In addition, -dV/dt (max) was significantly depressed (-3.8 +/- 3.3 mV/ms) and ST segment potential elevated (23.3 +/- 14.6 mV) in LCx1 compared to LCx2 (-9.5 +/- 3.4 mV/ms and 0.3 +/- 1.4 mV). Anisotropic conduction, Cx43 and ST segment potential measurements from the left anterior descending coronary artery territory, and interstitial collagen from all regions were similar to the healthy. Thus, moderate Cx43 reduction to "clinically relevant" levels can, in conjunction with regional energetic stress and depression of sarcolemmal active generator properties, provide a substrate for conduction disturbances
    corecore