37 research outputs found

    Molecular Defects of Vitamin B6 Metabolism Associated with Neonatal Epileptic Encephalopathy

    Get PDF
    Neonatal epileptic encephalopathy (NEE) is a seizure disorder that occurs within hours from birth and arises from central nervous system (CNS) dysfunctions of various origins, including metabolic or inflammatory conditions, abnormalities of brain structure and cerebrovascular diseases. In some rare circumstances, NEE is refractory to conventional antiepileptic drugs (AEDs) but responds very well to treatment with vitamin B6 in the form of either pyridoxine (PN) or pyridoxal 5’-phosphate (PLP). Vitamin B6-dependent NEE derives either from a deficiency of PLP, from inborn errors in enzymes, such as pyridoxine 5’-phosphate oxidase (PNPOx) and pyridoxal kinase (PL kinase) involved in the PLP salvage pathway or from inherited mutations of enzymes, such as -aminoadipic semialdehyde dehydrogenase (also known as antiquitin) involved in other metabolic pathways, which lead to the accumulation of intermediates that react with PLP, reducing its availability. Clinical phenotypes observed in vitamin B6-dependent NEE patients may include fetal distress, hypoglycemia, acidosis, anemia, and asphyxia. The health state of untreated patients may undergo progressive deterioration, which can lead to death within weeks. Surviving children are usually mentally retarded and are dependent on vitamin B6 to control the disease. Several known cases of B-dependent NEE, however do not or only mildly manifest some of the above clinical features, and are characterized by mild to moderate developmental delay. This chapter will review the molecular mechanism of how in-born errors in PNPOx or antiquitin affect PLP levels in the cell and lead to NEE. We will also review important clinical and general features associated with PLP dependent NEE, and provide some directions for clinicians to diagnose and treat or manage the diseas

    Crystal Structures of Human Pyridoxal Kinase in Complex with the Neurotoxins, Ginkgotoxin and Theophylline: Insights into Pyridoxal Kinase Inhibition

    Get PDF
    Several drugs and natural compounds are known to be highly neurotoxic, triggering epileptic convulsions or seizures, and causing headaches, agitations, as well as other neuronal symptoms. The neurotoxic effects of some of these compounds, including theophylline and ginkgotoxin, have been traced to their inhibitory activity against human pyridoxal kinase (hPL kinase), resulting in deficiency of the active cofactor form of vitamin B6, pyridoxal 5′-phosphate (PLP). Pyridoxal (PL), an inactive form of vitamin B6 is converted to PLP by PL kinase. PLP is the B6 vitamer required as a cofactor for over 160 enzymatic activities essential in primary and secondary metabolism. We have performed structural and kinetic studies on hPL kinase with several potential inhibitors, including ginkgotoxin and theophylline. The structural studies show ginkgotoxin and theophylline bound at the substrate site, and are involved in similar protein interactions as the natural substrate, PL. Interestingly, the phosphorylated product of ginkgotoxin is also observed bound at the active site. This work provides insights into the molecular basis of hPL kinase inhibition and may provide a working hypothesis to quickly screen or identify neurotoxic drugs as potential hPL kinase inhibitors. Such adverse effects may be prevented by administration of an appropriate form of vitamin B6, or provide clues of how to modify these drugs to help reduce their hPL kinase inhibitory effects

    Functional and structural properties of pyridoxal reductase (PdxI) from Escherichia coli. A pivotal enzyme in the vitamin B6 salvage pathway

    Get PDF
    Pyridoxine 4-dehydrogenase (PdxI), a NADPH-dependent pyridoxal reductase, is one of the key players in the Escherichia coli pyridoxal 5'-phosphate (PLP) salvage pathway. This enzyme, which catalyses the reduction of pyridoxal into pyridoxine, causes pyridoxal to be converted into PLP via the formation of pyridoxine and pyridoxine phosphate. The structural and functional properties of PdxI were hitherto unknown, preventing a rational explanation of how and why this longer, detoured pathway occurs, given that, in E. coli, two pyridoxal kinases (PdxK and PdxY) exist that could convert pyridoxal directly into PLP. Here, we report a detailed characterisation of E. coli PdxI that explains this behaviour. The enzyme efficiently catalyses the reversible transformation of pyridoxal into pyridoxine, although the reduction direction is thermodynamically strongly favoured, following a compulsory-order ternary-complex mechanism. In vitro, the enzyme is also able to catalyse PLP reduction and use NADH as an electron donor, although with lower efficiency. As with all members of the aldo-keto reductase (AKR) superfamily, the enzyme has a TIM barrel fold; however, it shows some specific features, the most important of which is the presence of an Arg residue that replaces the catalytic tetrad His residue that is present in all AKRs and appears to be involved in substrate specificity. The above results, in conjunction with kinetic and static measurements of vitamins B6 in cell extracts of E. coli wild-type and knockout strains, shed light on the role of PdxI and both kinases in determining the pathway followed by pyridoxal in its conversion to PLP, which has a precise regulatory function

    Peptidomimetic and Non- Peptidomimetic Derivatives as Possible SARS-CoV-2 Main Protease (Mpro) Inhibitors

    Get PDF
    To design novel inhibitors of the SARS-CoV-2 main protease (Mpro), we investigated the binding mode of the recently reported α-ketoamide inhibitors of this enzyme. Following, we utilized in-silico screening to identify 168 peptidomimetic and non-peptidomimetic compounds that are high probability Mpro binding candidates. The compounds were synthesized in 5 to 10 mg for initial screening for their potential inhibition of Mpro using Fluorescence Resonance Energy Transfer (FRET) assay. The study was conducted using the main protease, MBP-tagged (SARS-CoV-2) Assay Kit (BPS Bioscience, #79955-2), and the fluorescence due to enzymatic cleavage of substrate measured using BMG LABTECH CLARIOstar™, a fluorescent microplate reader, with an excited/emission wavelength of 360 nm/460 nm, respectively. The FRET assay showed 29 compounds to exhibit lower fluorescence compared to the positive control, indicating inhibitory activity, with three of the compounds exhibiting over 50% enzymatic inhibition. The assay average scores were plotted as dose inhibition curves using variable parameter nonlinear regression to calculate the IC50 values. To design more potent inhibitors, an in-silico molecular docking simulation using the SARS-CoV-2 Mpro crystal structure was conducted to investigate on a molecular level the key binding residues at the active site, as well as the possible binding modes and affinity of the lead inhibitors. Additionally, an in-silico study of the compounds\u27 molecular properties and physicochemical profiles was performed to predict their pharmacokinetic properties and assess their suitability as potential orally active drug candidates.https://scholarscompass.vcu.edu/gradposters/1139/thumbnail.jp

    Characterization of the Escherichia coli pyridoxal 5'-phosphate homeostasis protein (YggS): Role of lysine residues in PLP binding and protein stability

    Get PDF
    The pyridoxal 5'-phosphate (PLP) homeostasis protein (PLPHP) is a ubiquitous member of the COG0325 family with apparently no catalytic activity. Although the actual cellular role of this protein is unknown, it has been observed that mutations of the PLPHP encoding gene affect the activity of PLP-dependent enzymes, B6 vitamers and amino acid levels. Here we report a detailed characterization of the Escherichia coli ortholog of PLPHP (YggS) with respect to its PLP binding and transfer properties, stability, and structure. YggS binds PLP very tightly and is able to slowly transfer it to a model PLP-dependent enzyme, serine hydroxymethyltransferase. PLP binding to YggS elicits a conformational/flexibility change in the protein structure that is detectable in solution but not in crystals. We serendipitously discovered that the K36A variant of YggS, affecting the lysine residue that binds PLP at the active site, is able to bind PLP covalently. This observation led us to recognize that a number of lysine residues, located at the entrance of the active site, can replace Lys36 in its PLP binding role. These lysines form a cluster of charged residues that affect protein stability and conformation, playing an important role in PLP binding and possibly in YggS function

    Elucidating the Interaction between Pyridoxine 5′-Phosphate Oxidase and Dopa Decarboxylase: Activation of B6-Dependent Enzyme

    No full text
    Pyridoxal 5′-phosphate (PLP), the active form of vitamin B6, serves as a cofactor for scores of B6-dependent (PLP-dependent) enzymes involved in many cellular processes. One such B6 enzyme is dopa decarboxylase (DDC), which is required for the biosynthesis of key neurotransmitters, e.g., dopamine and serotonin. PLP-dependent enzymes are biosynthesized as apo-B6 enzymes and then converted to the catalytically active holo-B6 enzymes by Schiff base formation between the aldehyde of PLP and an active site lysine of the protein. In eukaryotes, PLP is made available to the B6 enzymes through the activity of the B6-salvage enzymes, pyridoxine 5′-phosphate oxidase (PNPO) and pyridoxal kinase (PLK). To minimize toxicity, the cell keeps the content of free PLP (unbound) very low through dephosphorylation and PLP feedback inhibition of PNPO and PLK. This has led to a proposed mechanism of complex formation between the B6-salvage enzymes and apo-B6 enzymes prior to the transfer of PLP, although such complexes are yet to be characterized at the atomic level, presumably due to their transient nature. A computational study, for the first time, was used to predict a likely PNPO and DDC complex, which suggested contact between the allosteric PLP tight-binding site on PNPO and the active site of DDC. Using isothermal calorimetry and/or surface plasmon resonance, we also show that PNPO binds both apoDDC and holoDDC with dissociation constants of 0.93 ± 0.07 μM and 2.59 ± 0.11 μM, respectively. Finally, in the presence of apoDDC, the tightly bound PLP on PNPO is transferred to apoDDC, resulting in the formation of about 35% holoDDC

    An Investigation of Structure-Activity Relationships of Azolylacryloyl Derivatives Yielded Potent and Long-Acting Hemoglobin Modulators for Reversing Erythrocyte Sickling

    No full text
    Aromatic aldehydes that bind to sickle hemoglobin (HbS) to increase the protein oxygen affinity and/or directly inhibit HbS polymer formation to prevent the pathological hypoxia-induced HbS polymerization and the subsequent erythrocyte sickling have for several years been studied for the treatment of sickle cell disease (SCD). With the exception of Voxelotor, which was recently approved by the U.S. Food and Drug Administration (FDA) to treat the disease, several other promising antisickling aromatic aldehydes have not fared well in the clinic because of metabolic instability of the aldehyde moiety, which is critical for the pharmacologic activity of these compounds. Over the years, our group has rationally developed analogs of aromatic aldehydes that incorporate a stable Michael addition reactive center that we hypothesized would form covalent interactions with Hb to increase the protein affinity for oxygen and prevent erythrocyte sickling. Although, these compounds have proven to be metabolically stable, unfortunately they showed weak to no antisickling activity. In this study, through additional targeted modifications of our lead Michael addition compounds, we have discovered other novel antisickling agents. These compounds, designated MMA, bind to the α-globin and/or β-globin to increase Hb affinity for oxygen and concomitantly inhibit erythrocyte sickling with significantly enhanced and sustained pharmacologic activities in vitro

    Aryloxyalkanoic Acids as Non-Covalent Modifiers of the Allosteric Properties of Hemoglobin

    No full text
    Hemoglobin (Hb) modifiers that stereospecifically inhibit sickle hemoglobin polymer formation and/or allosterically increase Hb affinity for oxygen have been shown to prevent the primary pathophysiology of sickle cell disease (SCD), specifically, Hb polymerization and red blood cell sickling. Several such compounds are currently being clinically studied for the treatment of SCD. Based on the previously reported non-covalent Hb binding characteristics of substituted aryloxyalkanoic acids that exhibited antisickling properties, we designed, synthesized and evaluated 18 new compounds (KAUS II series) for enhanced antisickling activities. Surprisingly, select test compounds showed no antisickling effects or promoted erythrocyte sickling. Additionally, the compounds showed no significant effect on Hb oxygen affinity (or in some cases, even decreased the affinity for oxygen). The X-ray structure of deoxygenated Hb in complex with a prototype compound, KAUS-23, revealed that the effector bound in the central water cavity of the protein, providing atomic level explanations for the observed functional and biological activities. Although the structural modification did not lead to the anticipated biological effects, the findings provide important direction for designing candidate antisickling agents, as well as a framework for novel Hb allosteric effectors that conversely, decrease the protein affinity for oxygen for potential therapeutic use for hypoxic- and/or ischemic-related diseases
    corecore