126 research outputs found

    Inhibition of food intake in obese subjects by peptide YY3-36

    Get PDF
    Background: The gut hormone fragment peptide YY3-36 (PYY) reduces appetite and food intake when infused into subjects of normal weight. In common with the adipocyte hormone leptin, PYY reduces food intake by modulating appetite circuits in the hypothalamus. However, in obesity there is a marked resistance to the action of leptin, which greatly limits its therapeutic effectiveness. We investigated whether obese subjects were also resistant to the anorectic effects of PYY.Methods: We compared the effects of PYY infusion on appetite and food intake in 12 obese and 12 lean subjects in a double-blind, placebo-controlled, crossover study. The plasma levels of PYY, ghrelin, leptin, and insulin were also determined.Results: Caloric intake during a buffet lunch offered two hours after the infusion of PYY was decreased by 30 percent in the obese subjects (P<0.001) and 31 percent in the lean subjects (P<0.001). PYY infusion also caused a significant decrease in the cumulative 24-hour caloric intake in both obese and lean subjects. PYY infusion reduced plasma levels of the appetite-stimulatory hormone ghrelin. Endogenous fasting and postprandial levels of PYY were significantly lower in obese subjects (the mean [+/-SE] fasting PYY levels were 10.2+/-0.7 pmol per liter in the obese group and 16.9+/-0.8 pmol per liter in the lean group, P<0.001). Furthermore, the fasting PYY levels correlated negatively with the body-mass index (r=-0.84, P<0.001).Conclusions: We found that obese subjects were not resistant to the anorectic effects of PYY. Endogenous PYY levels were low in the obese subjects, suggesting that PYY deficiency may contribute to the pathogenesis of obesity

    Hypothalamic actions of neuromedin U.

    No full text
    The central nervous system and gut peptide neuromedin U (NMU) inhibits feeding after intracerebroventricular injection. This study explored the hypothalamic actions of NMU on feeding and the hypothalamo-pituitary-adrenal axis. Intraparaventricular nucleus (intra-PVN) NMU dose-dependently inhibited food intake, with a minimum effective dose of 0.1 nmol and a robust effect at 0.3 nmol. Feeding inhibition was mapped by NMU injection into eight hypothalamic areas. NMU (0.3 nmol) inhibited food intake in the PVN (0-1 h, 59 ± 6.9% of the control value; P < 0.001) and arcuate nucleus (0-1 h, 76 ± 10.4% of the control value; P < 0.05). Intra-PVN NMU markedly increased grooming and locomotor behavior and dose-dependently increased plasma ACTH (0.3 nmol NMU, 24.8 ± 1.9 pg/ml; saline, 11.4 ± 1.0; P < 0.001) and corticosterone (0.3 nmol NMU, 275.4 ± 40.5 ng/ml; saline, 129.4 ± 25.0; P < 0.01). Using hypothalamic explants in vitro, NMU stimulated CRH (100 nM NMU, 5.9 ± 0.95 pmol/explant; basal, 3.8 ± 0.39; P < 0.01) and arginine vasopressin release (100 nM NMU, 124.5 ± 21.8 fmol/explant; basal, 74.5 ± 7.6; P < 0.01). Leptin stimulated NMU release (141.9 ± 20.4 fmol/explant; basal, 92.9 ± 9.4; P < 0.01). Thus, we describe a novel role for NMU in the PVN to stimulate the hypothalamo-pituitary-adrenal axis and locomotor and grooming behavior and to inhibit feeding

    Neuromedin U partially mediates leptin-induced hypothalamo-pituitary adrenal (HPA) stimulation and has a physiological role in the regulation of the HPA axis in the rat.

    No full text
    Intracerebroventricular (ICV) administration of the hypothalamic neuropeptide neuromedin U (NMU) or the adipostat hormone leptin increases plasma ACTH and corticosterone. The relationship between leptin and NMU in the regulation of the hypothalamo-pituitary adrenal (HPA) axis is currently unknown. In this study, leptin (1 nM) significantly increased the release of CRH from ex vivo hypothalamic explants by 207 ± 8.4% (P < 0.05 vs. basal), an effect blocked by the administration of anti-NMU IgG. The ICV administration of leptin (10 μg, 0.625 nmol) increased plasma ACTH and corticosterone 20 min after injection [plasma ACTH (picograms per milliliter): vehicle, 63 ± 20, leptin, 135 ± 36, P < 0.05; plasma corticosterone (nanograms per milliliter): vehicle, 285 ± 39, leptin, 452 ± 44, P < 0.01]. These effects were partially attenuated by the prior administration of anti-NMU IgG. Peripheral leptin also stimulated ACTH release, an effect attenuated by prior ICV administration of anti-NMU IgG. We examined the diurnal pattern of hypothalamic NMU mRNA expression and peptide content, plasma leptin, and plasma corticosterone. The diurnal changes in hypothalamic NMU mRNA expression were positively correlated with hypothalamic NMU peptide content, plasma corticosterone, and plasma leptin. The ICV administration of anti-NMU IgG significantly attenuated the dark phase rise in corticosterone [corticosterone (nanograms per milliliter): vehicle, 493 ± 38; NMU IgG, 342 ± 47 (P < 0.05)]. These studies suggest that NMU may play a role in the regulation of the HPA axis and partially mediate leptin-induced HPA stimulation. Copyright © 2006 by The Endocrine Society

    Mycoprotein reduces energy intake and postprandial insulin release without altering glucagon-like peptide-1 and peptide tyrosine-tyrosine concentrations in healthy overweight and obese adults: a randomised-controlled trial

    Get PDF
    Dietary mycoprotein decreases energy intake in lean individuals. The effects in overweight individuals are unclear, and the mechanisms remain to be elucidated. This study aimed to investigate the effect of mycoprotein on energy intake, appetite regulation, and the metabolic phenotype in overweight and obese volunteers. In two randomised-controlled trials, fifty-five volunteers (age: 31 (95 % CI 27, 35) years), BMI: 28·0 (95 % CI 27·3, 28·7) kg/m2) consumed a test meal containing low (44 g), medium (88 g) or high (132 g) mycoprotein or isoenergetic chicken meals. Visual analogue scales and blood samples were collected to measure appetite, glucose, insulin, peptide tyrosine-tyrosine (PYY) and glucagon-like peptide-1 (GLP-1). Ad libitum energy intake was assessed after 3 h in part A (n 36). Gastric emptying by the paracetamol method, resting energy expenditure and substrate oxidation were recorded in part B (n 14). Metabonomics was used to compare plasma and urine samples in response to the test meals. Mycoprotein reduced energy intake by 10 % (280 kJ (67 kcal)) compared with chicken at the high content (P=0·009). All mycoprotein meals reduced insulin concentrations compared with chicken (incremental AUClow (IAUClow): -8 %, IAUCmedium: -12 %, IAUChigh: -21 %, P=0·004). There was no significant difference in glucose, PYY, GLP-1, gastric emptying rate and energy expenditure. Following chicken intake, paracetamol-glucuronide was positively associated with fullness. After mycoprotein, creatinine and the deamination product of isoleucine, α-keto-β-methyl-N-valerate, were inversely related to fullness, whereas the ketone body, β-hydroxybutyrate, was positively associated. In conclusion, mycoprotein reduces energy intake and insulin release in overweight volunteers. The mechanism does not involve changes in PYY and GLP-1. The metabonomics analysis may bring new understanding to the appetite regulatory properties of food.</p

    Ghrelin causes hyperphagia and obesity in rats.

    No full text
    Ghrelin, a circulating growth hormone–releasing pep-tide derived from the stomach, stimulates food intake. The lowest systemically effective orexigenic dose of ghrelin was investigated and the resulting plasma ghre-lin concentration was compared with that during fast-ing. The lowest dose of ghrelin that produced a significant stimulation of feeding after intraperitoneal injection was 1 nmol. The plasma ghrelin concentration after intraperitoneal injection of 1 nmol of ghrelin (2.83 0.13 pmol/ml at 60 min postinjection) was not significantly different from that occurring after a 24-h fast (2.79 0.32 pmol/ml). After microinjection into defined hypothalamic sites, ghrelin (30 pmol) stimu-lated food intake most markedly in the arcuate nucleus (Arc) (0–1 h food intake, 427 43 % of control; P &lt

    Somatostatin infusion lowers plasma ghrelin withoug reducing appetite in adults with Pradi-Willi syndrome

    Get PDF
    Prader-Willi syndrome (PWS) is characterized by life-threatening childhood-onset hyperphagia, obesity and, uniquely, high plasma levels of ghrelin, the orexigenic gastric hormone. Somatostatin suppresses ghrelin secretion in normal subjects. We therefore examined the effect of somatostatin on plasma ghrelin and appetite in four male PWS adults fasted overnight in a double-blind, placebo-controlled, randomized cross-over study. Subjects received an intravenous infusion of somatostatin (250 mug/hr) or saline for 300min, and had blood samples taken every 30min for measurement of plasma ghrelin and PYY3-36 (anorexigenic intestinal hormone) by radio-immunoassay, and glucose. Appetite was measured by counting sandwiches eaten over a 60min free food access period from +120min. Despite somatostatin lowering fasting plasma ghrelin by 60 +/- 2% (P = 0.04) to levels seen in non-PWS men, there was no associated reduction in food intake (105 +/- 9% of food intake during saline infusion, P = 0.6). Somatostatin also lowered plasma PYY levels by 45 +/- 16% (P = 0.04), and produced post-prandial hyperglycemia (P = 0.04). We conclude that either hyperghrelinemia may not contribute to hyperphagia in PWS adults, or perhaps concomitant reductions in anorexigenic gastrointestinal hormones by somatostatin counteracted any anorexigenic effect of lowering orexigenic ghrelin. Somatostatin analogues may therefore not be an effective therapy for obesity in PWS. Larger chronic studies with long-acting somatostatin analogues will be needed to determine their benefits and risks in treating PWS obesity

    Cutaneous nociception and neurogenic inflammation evoked by PACAP38 and VIP

    Get PDF
    Pituitary adenylate cyclase-activating peptide-38 (PACAP38) and vasoactive intestinal peptide (VIP) belong to the same secretin–glucagon superfamily and are present in nerve fibers in dura and skin. Using a model of acute cutaneous pain we explored differences in pain perception and vasomotor responses between PACAP38 and VIP in 16 healthy volunteers in a double-blind, placebo-controlled, crossover study. All participants received intradermal injections of 200 pmol PACAP38, 200 pmol VIP and placebo into the volar forearm. Measurements included pain intensity on a visual analog scale (VAS), blood flow by laser Doppler flowmetry, visual flare and wheal. Pain intensities after PACAP38 and VIP were mild and limited to a short time of about 100 s after injection. The area under the VAS-time curve was larger following PACAP38 (P = 0.004) and VIP (P = 0.01) compared to placebo. We found no statistical difference in pain perception between PACAP38 and VIP. Skin blood flow increase, flare and wheal were larger after both PACAP38 (P = 0.011) and VIP (P = 0.001) compared to placebo. VIP induced a considerably larger increase in skin blood flow, flare and wheal than PACAP38 (P = 0.002). In conclusion, we found that peripheral nociceptive cutaneous responses elicited by PACAP38 and VIP are similar in healthy volunteers. This suggests that acute pain and vasomotor responses following intradermal injections of PACAP38 and VIP are primarily mediated by VPAC receptors
    corecore