17 research outputs found

    Genomic Analysis of Staphylococcus aureus of the Lineage CC130, Including mecC -Carrying MRSA and MSSA Isolates Recovered of Animal, Human, and Environmental Origins

    Get PDF
    Most methicillin resistant Staphylococcus aureus (MRSA) isolates harboring mecC gene belong to clonal complex CC130. This lineage has traditionally been regarded as animal-associated as it lacks the human specific immune evasion cluster (IEC), and has been recovered from a broad range of animal hosts. Nevertheless, sporadic mecC-MRSA human infections have been reported, with evidence of zoonotic transmission in some cases. The objective of this study was to investigate the whole-genome sequences of 18 S. aureus CC130 isolates [13 methicillin-resistant (mecC-MRSA) and five methicillin-susceptible (MSSA)] from different sequences types, obtained from a variety of host species and origins (human, livestock, wild birds and mammals, and water), and from different geographic locations, in order to identify characteristic markers and genomic features. Antibiotic resistance genes found among MRSA-CC130 were those associated with the SSCmecXI element. Most MRSA-CC130 strains carried a similar virulence gene profile. Additionally, six MRSA-CC130 possessed scn-sak and one MSSA-ST130 had lukMF’. The MSSA-ST700 strains were most divergent in their resistance and virulence genes. The pan-genome analysis showed that 29 genes were present solely in MRSA-CC130 (associated with SCCmecXI) and 21 among MSSA-CC130 isolates (associated with phages). The SCCmecXI, PBP3, GdpP, and AcrB were identical at the amino acid level in all strains, but some differences were found in PBP1, PBP2, PBP4, and YjbH proteins. An examination of the host markers showed that the 3’ region of the bacteriophage φ3 was nearly identical to the reference sequence. Truncated hlb gene was also found in scn-negative strains (two of them carrying sak-type gene). The dtlB gene of wild rabbit isolates included novel mutations. The vwbp gene was found in the three MSSA-ST700 strains from small ruminants and in one MSSA-ST130 from a red deer; these strains also carried a scn-type gene, different from the human and equine variants. Finally, a phylogenetic analysis showed that the three MSSA-ST700 strains and the two MSSA-ST130 strains cluster separately from the remaining MRSA-CC130 strains with the etD2 gene as marker for the main lineage. The presence of the human IEC cluster in some mecC-MRSA-CC130 strains suggests that these isolates may have had a human origin

    Genomic Analysis of Staphylococcus aureus of the Lineage CC130, Including mecC -Carrying MRSA and MSSA Isolates Recovered of Animal, Human, and Environmental Origins

    Get PDF
    Most methicillin resistant Staphylococcus aureus (MRSA) isolates harboring mecC gene belong to clonal complex CC130. This lineage has traditionally been regarded as animal-associated as it lacks the human specific immune evasion cluster (IEC), and has been recovered from a broad range of animal hosts. Nevertheless, sporadic mecC-MRSA human infections have been reported, with evidence of zoonotic transmission in some cases. The objective of this study was to investigate the whole-genome sequences of 18 S. aureus CC130 isolates [13 methicillin-resistant (mecC-MRSA) and five methicillin-susceptible (MSSA)] from different sequences types, obtained from a variety of host species and origins (human, livestock, wild birds and mammals, and water), and from different geographic locations, in order to identify characteristic markers and genomic features. Antibiotic resistance genes found among MRSA-CC130 were those associated with the SSCmecXI element. Most MRSA-CC130 strains carried a similar virulence gene profile. Additionally, six MRSA-CC130 possessed scn-sak and one MSSA-ST130 had lukMF’. The MSSA-ST700 strains were most divergent in their resistance and virulence genes. The pan-genome analysis showed that 29 genes were present solely in MRSA-CC130 (associated with SCCmecXI) and 21 among MSSA-CC130 isolates (associated with phages). The SCCmecXI, PBP3, GdpP, and AcrB were identical at the amino acid level in all strains, but some differences were found in PBP1, PBP2, PBP4, and YjbH proteins. An examination of the host markers showed that the 3’ region of the bacteriophage φ3 was nearly identical to the reference sequence. Truncated hlb gene was also found in scn-negative strains (two of them carrying sak-type gene). The dtlB gene of wild rabbit isolates included novel mutations. The vwbp gene was found in the three MSSA-ST700 strains from small ruminants and in one MSSA-ST130 from a red deer; these strains also carried a scn-type gene, different from the human and equine variants. Finally, a phylogenetic analysis showed that the three MSSA-ST700 strains and the two MSSA-ST130 strains cluster separately from the remaining MRSA-CC130 strains with the etD2 gene as marker for the main lineage. The presence of the human IEC cluster in some mecC-MRSA-CC130 strains suggests that these isolates may have had a human origin

    Identification of LukPQ, a novel, equid-adapted leukocidin of Staphylococcus aureus.

    Get PDF
    Bicomponent pore-forming leukocidins are a family of potent toxins secreted by Staphylococcus aureus, which target white blood cells preferentially and consist of an S- and an F-component. The S-component recognizes a receptor on the host cell, enabling high-affinity binding to the cell surface, after which the toxins form a pore that penetrates the cell lipid bilayer. Until now, six different leukocidins have been described, some of which are host and cell specific. Here, we identify and characterise a novel S. aureus leukocidin; LukPQ. LukPQ is encoded on a 45 kb prophage (ΦSaeq1) found in six different clonal lineages, almost exclusively in strains cultured from equids. We show that LukPQ is a potent and specific killer of equine neutrophils and identify equine-CXCRA and CXCR2 as its target receptors. Although the S-component (LukP) is highly similar to the S-component of LukED, the species specificity of LukPQ and LukED differs. By forming non-canonical toxin pairs, we identify that the F-component contributes to the observed host tropism of LukPQ, thereby challenging the current paradigm that leukocidin specificity is driven solely by the S-component

    Staphylococcus aureus in Animals and Food: Methicillin Resistance, Prevalence and Population Structure. A Review in the African Continent

    No full text
    The interest about Staphylococcus aureus (S. aureus) and methicillin resistant S. aureus (MRSA) in livestock, and domestic and wild animals has significantly increased. The spread of different clonal complexes related to livestock animals, mainly CC398, and the recent description of the new mecC gene, make it necessary to know more about the epidemiology and population structure of this microorganism all over the world. Nowadays, there are several descriptions about the presence of S. aureus and/or MRSA in different animal species (dogs, sheep, donkeys, bats, pigs, and monkeys), and in food of animal origin in African countries. In this continent, there is a high diversity of ethnicities, cultures or religions, as well as a high number of wild animal species and close contact between humans and animals, which can have a relevant impact in the epidemiology of this microorganism. This review shows that some clonal lineages associated with humans (CC1, CC15, CC72, CC80, CC101, and CC152) and animals (CC398, CC130 and CC133) are present in this continent in animal isolates, although the mecC gene has not been detected yet. However, available studies are limited to a few countries, very often with incomplete information, and many more studies are necessary to cover a larger number of African countries

    Detection of CTX-M-15 harboring Escherichia coli isolated from wild birds in Tunisia

    No full text
    Abstract Background The spreading of antibiotic resistant bacteria is becoming nowadays an alarming threat to human and animal health. There is increasing evidence showing that wild birds could significantly contribute to the transmission and spreading of drug-resistant bacteria. However, data for antimicrobial resistance in wild birds remain scarce, especially throughout Africa. The aims of this investigation were to analyze the prevalence of ESBL-producing E. coli in faecal samples of wild birds in Tunisia and to characterize the recovered isolates. Results One hundred and eleven samples were inoculated on MacConkey agar plates supplemented with cefotaxime (2 μg/ml). ESBL-producing E. coli isolates were detected in 12 of 111 faecal samples (10.81%) and one isolate per sample was further characterized. β-lactamase detected genes were as follows: bla CTX-M-15 (8 isolates), bla CTX-M-15 + bla TEM-1b (4 isolates). The ISEcp1 and orf477 sequences were found respectively in the regions upstream and downstream of all bla CTX-M-15 genes. Seven different plasmid profiles were observed among the isolates. IncF (FII, FIA, FIB) and IncW replicons were identified in 11 CTX-M-15 producing isolates, and mostly, other replicons were also identified: IncHI2, IncA/C, IncP, IncI1 and IncX. All ESBL-producing E. coli isolates were integron positive and possessed “empty” integron structures with no inserted region of DNA. The following detected virulence genes were: (number of isolates in parentheses): fimA (ten); papC (seven); aer (five); eae (one); and papGIII, hly, cnf, and bfp (none). Molecular typing using pulsed-field gel electrophoresis and multilocus sequence typing showed a low genetic heterogeneity among the 12 ESBL-producing strains with five unrelated PFGE types and five different sequence types (STs) respectively. CTX-M-15-producing isolates were ascribed to phylogroup A (eleven isolates) and B2 (one isolate). Conclusion To our knowledge, this study provides the first insight into the contribution of wild birds to the dynamics of ESBL-producing E. coli in Tunisia

    High diversity of genetic lineages and virulence genes in nasal <it>Staphylococcus aureus</it> isolates from donkeys destined to food consumption in Tunisia with predominance of the ruminant associated CC133 lineage

    No full text
    Abstract Background The objective of this study was to determine the genetic lineages and the incidence of antibiotic resistance and virulence determinants of nasal Staphylococcus aureus isolates of healthy donkeys destined to food consumption in Tunisia. Results Nasal swabs of 100 donkeys obtained in a large slaughterhouse in 2010 were inoculated in specific media for S. aureus and methicillin-resistant S. aureus (MRSA) recovery. S. aureus was obtained in 50% of the samples, being all of isolates methicillin-susceptible (MSSA). Genetic lineages, toxin gene profile, and antibiotic resistance mechanisms were determined in recovered isolates. Twenty-five different spa-types were detected among the 50 MSSA with 9 novel spa-types. S. aureus isolates were ascribed to agr type I (37 isolates), III (7), II (4), and IV (2). Sixteen different sequence-types (STs) were revealed by MLST, with seven new ones. STs belonging to clonal clomplex CC133 were majority. The gene tst was detected in 6 isolates and the gene etb in one isolate. Different combinations of enterotoxin, leukocidin and haemolysin genes were identified among S. aureus isolates. The egc-cluster-like and an incomplete egc-cluster-like were detected. Isolates resistant to penicillin, erythromycin, fusidic acid, streptomycin, ciprofloxacin, clindamycin, tetracycline, or chloramphenicol were found and the genes blaZ, erm(A), erm(C), tet(M), fusC were identified. Conclusions The nares of donkeys frequently harbor MSSA. They could be reservoirs of the ruminant-associated CC133 lineage and of toxin genes encoding TSST-1 and other virulence traits with potential implications in public health. CC133 seems to have a broader host distribution than expected.</p
    corecore