5 research outputs found
Recommended from our members
Real-Time Automated Surveillance for Ventilator Associated Events Using Streaming Electronic Health Data
Abstract Background: Criteria defining Ventilator Associated Events (VAEs) are objective and often available in the electronic health record (EHR) data. The use of ventilation data extracted directly from the patient’s bedside monitor to allow for real-time surveillance, however, has not been previously incorporated into electronic surveillance approaches. Here we describe validation of a system that can detect and report on VAEs hospital-wide autonomously and in real-time. Methods: We developed a secure informatics hardware and software platform to identify VAEs autonomously using streaming data. The automated process included 1) archiving and analysis of bedside physiologic monitor data to detect increases in positive end-expiratory pressure (PEEP) or FiO2 settings; 2) real-time querying of EHR data for leukopenia or leukocytosis and concurrent antibiotic initiation; and 3) retrieval and interpretation of microbiology reports for the presence of respiratory pathogens. The algorithm was validated on two 3-month periods in 2015 and 2016 as follows: 1) autonomous surveillance (AS) generated detections of three VAE subclasses: VAC, IVAC, and PVAP; 2) manual surveillance (MS) by Infection Control (IC) staff independently performed standard surveillance based on chart review, 3) senior IC staff adjudicated the gold standard for cases of AS-MS discordance. The sensitivity (Se), specificity (Sp), and positive predictive value (PPV) of the algorithm are reported. Results: The number of ventilated patients, ventilator days, and events were: 1,591/9,407/3,014. In cases with complete data, AS detected 66 VAE events identified by MS; AS detected 32 VAEs missed by MS; no MS-identified events were missed by AS. The Se, Sp, and PPV of AS and MS were: 91%/100%/100%, and 61%/100%/83%, respectively. Clinical surveillance case reports generated by AS enabled visual interpretation (figure). Conclusion: We developed a surveillance tool directly streaming bedside physiologic monitor and EHR data including ventilator settings, laboratory results, and microbiology reports, to apply the CDC’s VAE definitions on source data. This resulted in an accurate, objective, and efficient method for real-time hospital-wide surveillance. Disclosures All authors: No reported disclosures
Burst Suppression: Causes and Effects on Mortality in Critical Illness
BACKGROUND: Burst suppression in mechanically ventilated intensive care unit (ICU) patients is associated with increased mortality. However, the relative contributions of propofol use and critical illness itself to burst suppression; of burst suppression, propofol, and critical illness to mortality; and whether preventing burst suppression might reduce mortality, have not been quantified.
METHODS: The dataset contains 471 adults from seven ICUs, after excluding anoxic encephalopathy due to cardiac arrest or intentional burst suppression for therapeutic reasons. We used multiple prediction and causal inference methods to estimate the effects connecting burst suppression, propofol, critical illness, and in-hospital mortality in an observational retrospective study. We also estimated the effects mediated by burst suppression. Sensitivity analysis was used to assess for unmeasured confounding.
RESULTS: The expected outcomes in a counterfactual randomized controlled trial (cRCT) that assigned patients to mild versus severe illness are expected to show a difference in burst suppression burden of 39%, 95% CI [8-66]%, and in mortality of 35% [29-41]%. Assigning patients to maximal (100%) burst suppression burden is expected to increase mortality by 12% [7-17]% compared to 0% burden. Burst suppression mediates 10% [2-21]% of the effect of critical illness on mortality. A high cumulative propofol dose (1316 mg/kg) is expected to increase burst suppression burden by 6% [0.8-12]% compared to a low dose (284 mg/kg). Propofol exposure has no significant direct effect on mortality; its effect is entirely mediated through burst suppression.
CONCLUSIONS: Our analysis clarifies how important factors contribute to mortality in ICU patients. Burst suppression appears to contribute to mortality but is primarily an effect of critical illness rather than iatrogenic use of propofol
Automated Annotation of Epileptiform Burden and Its Association with Outcomes
OBJECTIVE: This study was undertaken to determine the dose-response relation between epileptiform activity burden and outcomes in acutely ill patients.
METHODS: A single center retrospective analysis was made of 1,967 neurologic, medical, and surgical patients who underwent \u3e16 hours of continuous electroencephalography (EEG) between 2011 and 2017. We developed an artificial intelligence algorithm to annotate 11.02 terabytes of EEG and quantify epileptiform activity burden within 72 hours of recording. We evaluated burden (1) in the first 24 hours of recording, (2) in the 12-hours epoch with highest burden (peak burden), and (3) cumulatively through the first 72 hours of monitoring. Machine learning was applied to estimate the effect of epileptiform burden on outcome. Outcome measure was discharge modified Rankin Scale, dichotomized as good (0-4) versus poor (5-6).
RESULTS: Peak epileptiform burden was independently associated with poor outcomes (p \u3c 0.0001). Other independent associations included age, Acute Physiology and Chronic Health Evaluation II score, seizure on presentation, and diagnosis of hypoxic-ischemic encephalopathy. Model calibration error was calculated across 3 strata based on the time interval between last EEG measurement (up to 72 hours of monitoring) and discharge: (1) 10 days between last measurement and discharge, 0.0998 (95% CI = 0.0698-0.1335). After adjusting for covariates, increase in peak epileptiform activity burden from 0 to 100% increased the probability of poor outcome by 35%.
INTERPRETATION: Automated measurement of peak epileptiform activity burden affords a convenient, consistent, and quantifiable target for future multicenter randomized trials investigating whether suppressing epileptiform activity improves outcomes