5 research outputs found

    Burst Suppression: Causes and Effects on Mortality in Critical Illness

    No full text
    BACKGROUND: Burst suppression in mechanically ventilated intensive care unit (ICU) patients is associated with increased mortality. However, the relative contributions of propofol use and critical illness itself to burst suppression; of burst suppression, propofol, and critical illness to mortality; and whether preventing burst suppression might reduce mortality, have not been quantified. METHODS: The dataset contains 471 adults from seven ICUs, after excluding anoxic encephalopathy due to cardiac arrest or intentional burst suppression for therapeutic reasons. We used multiple prediction and causal inference methods to estimate the effects connecting burst suppression, propofol, critical illness, and in-hospital mortality in an observational retrospective study. We also estimated the effects mediated by burst suppression. Sensitivity analysis was used to assess for unmeasured confounding. RESULTS: The expected outcomes in a counterfactual randomized controlled trial (cRCT) that assigned patients to mild versus severe illness are expected to show a difference in burst suppression burden of 39%, 95% CI [8-66]%, and in mortality of 35% [29-41]%. Assigning patients to maximal (100%) burst suppression burden is expected to increase mortality by 12% [7-17]% compared to 0% burden. Burst suppression mediates 10% [2-21]% of the effect of critical illness on mortality. A high cumulative propofol dose (1316 mg/kg) is expected to increase burst suppression burden by 6% [0.8-12]% compared to a low dose (284 mg/kg). Propofol exposure has no significant direct effect on mortality; its effect is entirely mediated through burst suppression. CONCLUSIONS: Our analysis clarifies how important factors contribute to mortality in ICU patients. Burst suppression appears to contribute to mortality but is primarily an effect of critical illness rather than iatrogenic use of propofol

    Automated Annotation of Epileptiform Burden and Its Association with Outcomes

    No full text
    OBJECTIVE: This study was undertaken to determine the dose-response relation between epileptiform activity burden and outcomes in acutely ill patients. METHODS: A single center retrospective analysis was made of 1,967 neurologic, medical, and surgical patients who underwent \u3e16 hours of continuous electroencephalography (EEG) between 2011 and 2017. We developed an artificial intelligence algorithm to annotate 11.02 terabytes of EEG and quantify epileptiform activity burden within 72 hours of recording. We evaluated burden (1) in the first 24 hours of recording, (2) in the 12-hours epoch with highest burden (peak burden), and (3) cumulatively through the first 72 hours of monitoring. Machine learning was applied to estimate the effect of epileptiform burden on outcome. Outcome measure was discharge modified Rankin Scale, dichotomized as good (0-4) versus poor (5-6). RESULTS: Peak epileptiform burden was independently associated with poor outcomes (p \u3c 0.0001). Other independent associations included age, Acute Physiology and Chronic Health Evaluation II score, seizure on presentation, and diagnosis of hypoxic-ischemic encephalopathy. Model calibration error was calculated across 3 strata based on the time interval between last EEG measurement (up to 72 hours of monitoring) and discharge: (1) 10 days between last measurement and discharge, 0.0998 (95% CI = 0.0698-0.1335). After adjusting for covariates, increase in peak epileptiform activity burden from 0 to 100% increased the probability of poor outcome by 35%. INTERPRETATION: Automated measurement of peak epileptiform activity burden affords a convenient, consistent, and quantifiable target for future multicenter randomized trials investigating whether suppressing epileptiform activity improves outcomes

    Rationale for the clinical use of adipose-derived mesenchymal stem cells for COVID-19 patients

    No full text
    corecore