66 research outputs found
CD40 deficiency mitigates Alzheimer's disease pathology in transgenic mouse models
We have previously shown that transgenic mice carrying a mutant human APP but deficient in CD40L, display a decrease in astrocytosis and microgliosis associated with a lower amount of deposited Aβ. Furthermore, an anti-CD40L treatment causes a diminution of Aβ pathology in the brain and an improved performance in several cognitive tasks in the double transgenic PSAPP mouse model. Although these data suggest a potential role for CD40L in Alzheimer's disease pathology in transgenic mice they do not cast light on whether this effect is due to inhibition of signaling via CD40 or whether it is due to the mitigation of some other unknown role of CD40L. In the present report we have generated APP and PSAPP mouse models with a disrupted CD40 gene and compared the pathological features (such as amyloid burden, astrocytosis and microgliosis that are typical of Alzheimer's disease-like pathology in these transgenic mouse strains) with appropriate controls. We find that all these features are reduced in mouse models deficient for CD40 compared with their littermates where CD40 is present. These data suggest that CD40 signaling is required to allow the full repertoire of AD-like pathology in these mice and that inhibition of the CD40 signaling pathway is a potential therapeutic strategy in Alzheimer's disease
Feasibility of Predicting MCI/AD Using Neuropsychological Tests and Serum β-Amyloid
We examined the usefulness of brief neuropsychological tests and serum Aβ as a predictive test for detecting MCI/AD in older adults. Serum Aβ levels were measured from 208 subjects who were cognitively normal at enrollment and blood draw. Twenty-eight of the subjects subsequently developed MCI (n = 18) or AD (n = 10) over the follow-up period. Baseline measures of global cognition, memory, language fluency, and serum Aβ1–42 and the ratio of serum Aβ1–42/Aβ1–40 were significant predictors for future MCI/AD using Cox regression with demographic variables, APOE ε4, vascular risk factors, and specific medication as covariates. An optimal sensitivity of 85.2% and specificity of 86.5% for predicting MCI/AD was achieved using ROC analyses. Brief neuropsychological tests and measurements of Aβ1–42 obtained via blood warrants further study as a practical and cost effective method for wide-scale screening for identifying older adults who may be at-risk for pathological cognitive decline
Lifelong behavioral and neuropathological consequences of repetitive mild traumatic brain injury
Objective:
Exposure to repetitive concussion, or mild traumatic brain injury (mTBI), has been linked with increased risk of long-term neurodegenerative changes, specifically chronic traumatic encephalopathy (CTE). To date, preclinical studies largely have focused on the immediate aftermath of mTBI, with no literature on the lifelong consequences of mTBI in these models. This study provides the first account of lifelong neurobehavioral and histological consequences of repetitive mTBI providing unique insight into the constellation of evolving and ongoing pathologies with late survival.
Methods:
Male C57BL/6J mice (aged 2–3 months) were exposed to either single or repetitive mild TBI or sham procedure. Thereafter, animals were monitored and assessed at 24 months post last injury for measures of motor coordination, learning deficits, cognitive function, and anxiety-like behavior prior to euthanasia and preparation of the brains for detailed neuropathological and protein biochemical studies.
Results:
At 24 months survival animals exposed to r-mTBI showed clear evidence of learning and working memory impairment with a lack of spatial memory and vestibule-motor vestibulomotor deficits compared to sham animals. Associated with these late behavioral deficits there was evidence of ongoing axonal degeneration and neuroinflammation in subcortical white matter tracts. Notably, these changes were also observed after a single mTBI, albeit to a lesser degree than repetitive mTBI.
Interpretation:
In this context, our current data demonstrate, for the first time, that rather than an acute, time limited event, mild TBI can precipitate a lifelong degenerative process. These data therefore suggest that successful treatment strategies should consider both the acute and chronic nature of mTBI
Reduction of β-amyloid pathology by celastrol in a transgenic mouse model of Alzheimer's disease
<p>Abstract</p> <p>Background</p> <p>Aβ deposits represent a neuropathological hallmark of Alzheimer's disease (AD). Both soluble and insoluble Aβ species are considered to be responsible for initiating the pathological cascade that eventually leads to AD. Therefore, the identification of therapeutic approaches that can lower Aβ production or accumulation remains a priority. NFκB has been shown to regulate BACE-1 expression level, the rate limiting enzyme responsible for the production of Aβ. We therefore explored whether the known NFκB inhibitor celastrol could represent a suitable compound for decreasing Aβ production and accumulation <it>in vivo</it>.</p> <p>Methods</p> <p>The effect of celastrol on amyloid precursor protein (APP) processing, Aβ production and NFκB activation was investigated by western blotting and ELISAs using a cell line overexpressing APP. The impact of celastrol on brain Aβ accumulation was tested in a transgenic mouse model of AD overexpressing the human APP695sw mutation and the presenilin-1 mutation M146L (Tg PS1/APPsw) by immunostaining and ELISAs. An acute treatment with celastrol was investigated by administering celastrol intraperitoneally at a dosage of 1 mg/Kg in 35 week-old Tg PS1/APPsw for 4 consecutive days. In addition, a chronic treatment (32 days) with celastrol was tested using a matrix-driven delivery pellet system implanted subcutaneously in 5 month-old Tg PS1/APPsw to ensure a continuous daily release of 2.5 mg/Kg of celastrol.</p> <p>Results</p> <p><it>In vitro</it>, celastrol dose dependently prevented NFκB activation and inhibited BACE-1 expression. Celastrol potently inhibited Aβ<sub>1-40 </sub>and Aβ<sub>1-42 </sub>production by reducing the β-cleavage of APP, leading to decreased levels of APP-CTFβ and APPsβ. <it>In vivo</it>, celastrol appeared to reduce the levels of both soluble and insoluble Aβ<sub>1-38</sub>, Aβ<sub>1-40 </sub>and Aβ<sub>1-42</sub>. In addition, a reduction in Aβ plaque burden and microglial activation was observed in the brains of Tg PS1/APPsw following a chronic administration of celastrol.</p> <p>Conclusions</p> <p>Overall our data suggest that celastrol is a potent Aβ lowering compound that acts as an indirect BACE-1 inhibitor possibly by regulating BACE-1 expression level via an NFκB dependent mechanism. Additional work is required to determine whether chronic administration of celastrol can be safely achieved with cognitive benefits in a transgenic mouse model of AD.</p
Translational potential of long-term decreases in mitochondrial lipids in a mouse model of Gulf War Illness
Gulf War Illness (GWI) affects 25% of veterans from the 1990–1991 Gulf War (GW) and is accompanied by damage to the brain regions involved in memory processing. After twenty-five years, the chronic pathobiology of GWI is still unexplained. To address this problem, we examined the long-term consequences of GW exposures in an established GWI mouse model to identify biological processes that are relevant to the chronic symptoms of GWI. Three-month old male C57BL6 mice were exposed for 10 days to GW agents (pyridostigmine bromide and permethrin). Barnes Maze testing conducted at 15- and 16-months post-exposure revealed learning and memory impairment. Immunohistochemical analyses showed astroglia and microglia activation in the hippocampi of exposed mice. Proteomic studies identified perturbation of mitochondria function and metabolomics data showed decreases in the Krebs cycle compounds, lactate, β-hydroxybutyrate and glycerol-3 phosphate in the brains of exposed mice. Lipidomics data showed decreases in fatty acids, acylcarnitines and phospholipids, including cardiolipins in the brains of exposed mice. Pilot biomarker studies showed that plasma from exposed mice and veterans with GWI had increases in odd-chain, and decreases in long-chain, acylcarnitines compared to their respective controls. Very long-chain acylcarnitines were decreased in veterans with GWI compared to controls. These studies suggest that mitochondrial lipid disturbances might be associated with GWI and that further investigation is required to determine its role in the pathophysiology of this illness. Targeting mitochondrial function may provide effective therapies for GWI, and that lipid abnormalities could serve as biomarkers of GWI
Recommended from our members
MMP9 modulation improves specific neurobehavioral deficits in a mouse model of Alzheimer’s disease
Background
Matrix metallopeptidase 9 (MMP9) has been implicated in a variety of neurological disorders, including Alzheimer’s disease (AD), where MMP9 levels are elevated in the brain and cerebrovasculature. Previously our group demonstrated apolipoprotein E4 (apoE4) was less efficient in regulating MMP9 activity in the brain than other apoE isoforms, and that MMP9 inhibition facilitated beta-amyloid (Aβ) elimination across the blood–brain barrier (BBB)
Methods
In the current studies, we evaluated the impact of MMP9 modulation on Aβ disposition and neurobehavior in AD using two approaches, (1) pharmacological inhibition of MMP9 with SB-3CT in apoE4 x AD (E4FAD) mice, and (2) gene deletion of MMP9 in AD mice (MMP9KO/5xFAD)
Results
Treatment with the MMP9 inhibitor SB-3CT in E4FAD mice led to reduced anxiety compared to placebo using the elevated plus maze. Deletion of the MMP9 gene in 5xFAD mice also reduced anxiety using the open field test, in addition to improving sociability and social recognition memory, particularly in male mice, as assessed through the three-chamber task, indicating certain behavioral alterations in AD may be mediated by MMP9. However, neither pharmacological inhibition of MMP9 or gene deletion of MMP9 affected spatial learning or memory in the AD animals, as determined through the radial arm water maze. Moreover, the effect of MMP9 modulation on AD neurobehavior was not due to changes in Aβ disposition, as both brain and plasma Aβ levels were unchanged in the SB-3CT-treated E4FAD animals and MMP9KO/AD mice compared to their respective controls.
Conclusions
In total, while MMP9 inhibition did improve specific neurobehavioral deficits associated with AD, such as anxiety and social recognition memory, modulation of MMP9 did not alter spatial learning and memory or Aβ tissue levels in AD animals. While targeting MMP9 may represent a therapeutic strategy to mitigate aspects of neurobehavioral decline in AD, further work is necessary to understand the nature of the relationship between MMP9 activity and neurological dysfunction
Recommended from our members
Exogenous lipase administration alters gut microbiota composition and ameliorates Alzheimer’s disease-like pathology in APP/PS1 mice
Alzheimer’s disease (AD) represents the most common form of dementia in the elderly with no available disease modifying treatments. Altered gut microbial composition has been widely acknowledged as a common feature of AD, which potentially contributes to progression or onset of AD. To assess the hypothesis that Candida rugosa lipase (CRL), which has been shown to enhance gut microbiome and metabolite composition, can rebalance the gut microbiome composition and reduce AD pathology, the treatment effects in APPswe/PS1de9 (APP/PS1) mice were investigated. The analysis revealed an increased abundance of Acetatifactor and Clostridiales vadin BB60 genera in the gut; increased lipid hydrolysis in the gut lumen, normalization of peripheral unsaturated fatty acids, and reduction of neuroinflammation and memory deficits post treatment. Finally, we demonstrated that the evoked benefits on memory could be transferred via fecal matter transplant (FMT) into antibiotic-induced microbiome-depleted (AIMD) wildtype mice, ameliorating their memory deficits. The findings herein contributed to improve our understanding of the role of the gut microbiome in AD’s complex networks and suggested that targeted modification of the gut could contribute to amelioration of AD neuropathology
CARTOGRAPHIE PHYSIQUE ET TRANSCRIPTIONNELLE DE LA REGION CRITIQUE POUR LA TRISOMIE 21 (ENTRE D21S55-ETS2)
PARIS7-Bibliothèque centrale (751132105) / SudocSudocFranceF
- …