4 research outputs found

    Minimum net driving temperature concept for membrane distillation

    No full text
    In this study, we analyzed the heat requirement of membrane distillation (MD) to investigate the trade-off between the evaporation efficiency and driving force efficiency in a single effect MD system. We found that there exists a non-zero net driving temperature difference that maximizes efficiency. This is the minimum net driving temperature difference necessary for a rational operational strategy because below the minimum net driving temperature, both the productivity and efficiency can be increased by increasing the temperature difference. The minimum net driving temperature has a similar magnitude to the boiling point elevation (~0.5 °C for seawater), and depends on the properties of the membrane and the heat exchanger. The minimum net driving temperature difference concept can be used to understand the occurrence of optimal values of other parameters, such as flux, membrane thickness, and membrane length, if these parameters are varied in a way that consequently varies the net driving temperature difference.BT/Environmental Biotechnolog

    Potential pitfalls in membrane fouling evaluation: Merits of data representation as resistance instead of flux decline in membrane filtration

    No full text
    The manner in which membrane-fouling experiments are conducted and how fouling performance data are represented have a strong impact on both how the data are interpreted and on the conclusions that may be drawn. We provide a couple of examples to prove that it is possible to obtain misleading conclusions from commonly used representations of fouling data. Although the illustrative example revolves around dead-end ultrafiltration, the underlying principles are applicable to a wider range of membrane processes. When choosing the experimental conditions and how to represent fouling data, there are three main factors that should be considered: (I) the foulant mass is principally related to the filtered volume; (II) the filtration flux can exacerbate fouling effects (e.g., concentration polarization and cake compression); and (III) the practice of normalization, as in dividing by an initial value, disregards the difference in driving force and divides the fouling effect by different numbers. Thus, a bias may occur that favors the experimental condition with the lower filtration flux and the less-permeable membrane. It is recommended to: (I) avoid relative fouling performance indicators, such as relative flux decline (J/J0); (II) use resistance vs. specific volume; and (III) use flux-controlled experiments for fouling performance evaluation.BT/Environmental Biotechnolog

    Prediction of particulate fouling in full-scale reverse osmosis plants using the modified fouling index – ultrafiltration (MFI-UF) method

    No full text
    This study aims at applying and verifying the MFI-UF method to predict particulate fouling in RO plants. Two full-scale RO plants treating surface water, with average capacity of 800–2000 m3/h, were studied. Firstly, the MFI-UF of RO feed and concentrate was measured using 5–100 kDa membranes at same flux applied in the RO plants (20–26 L/m2.h). Subsequently, the particle disposition factor (Ω) was calculated to simulate particle deposition in RO cross-flow filtration. Finally, particulate fouling rates were predicted based on MFI-UF and Ω, and compared with the actual fouling rates in the plants. For plant A, the results showed that the fouling rates predicted using MFI-UF measured with 100 kDa membrane have the best agreement with the actual fouling (with 3–11 % deviation). For plant B, the fouling rates predicted based on both 10 and 100 kDa membranes agree well with the actual fouling (with 2 % and 15 % deviation, respectively). However, the fouling predicted based on 5 kDa membrane is considerably overestimated for both plants, which is attributed to the effect of the low surface porosity of 5 kDa membrane. More widespread applications of MFI-UF in full-scale RO plants are required to demonstrate the most suitable MFI-UF membranes for fouling prediction.Sanitary Engineerin

    Improving MFI-UF constant flux to more accurately predict particulate fouling in RO systems: Quantifying the effect of membrane surface porosity

    No full text
    This study aimed to quantify the effect of membrane surface porosity on particulate fouling predicted by the MFI-UF method at constant flux. Firstly, the surface porosity of polyethersulfone UF membranes (5–100 kDa) was determined using ultra-high resolution SEM. Thereafter, the MFI-UF was measured using suspensions of polystyrene particles (75 nm), which were pre-washed to remove surfactant and particle fractions smaller than the pores of MFI-UF membranes, thus ensuring complete retention of particles during MFI-UF measurements. Consequently, the MFI-UF values of washed polystyrene particle suspensions were independent of the pore size and depended only on the surface porosity of MFI-UF membrane. The results showed that the membrane surface porosity decreased with MWCO from 10.5% (100 kDa) to 0.6% (5 kDa), and consequently the MFI-UF increased from 3700 to 8700 s/L2, respectively. This increase in MFI-UF was attributed to the non-uniform distribution of membrane pores, which is exacerbated as surface porosity decreases. Consequently, preliminary correction factors of 0.4–1.0 were proposed for MFI-UF measured with UF membranes in the range 5–100 kDa. Finally, the surface porosity correction was applied to predict particulate fouling in a full-scale RO plant. However, additional research is required to establish correction factors for different types of feed water.Sanitary Engineerin
    corecore