5 research outputs found

    Assembling of G-strands into novel tetra-molecular parallel G4-DNA nanostructures using avidin–biotin recognition

    Get PDF
    We describe a method for the preparation of novel long (hundreds of nanometers), uniform, inter-molecular G4-DNA molecules composed of four parallel G-strands. The only long continuous G4-DNA reported so far are intra-molecular structures made of a single G-strand. To enable a tetra-molecular assembly of the G-strands we developed a novel approach based on avidin–biotin biological recognition. The steps of the G4-DNA production include: (i) Enzymatic synthesis of long poly(dG)-poly(dC) molecules with biotinylated poly(dG)-strand; (ii) Formation of a complex between avidin-tetramer and four biotinylated poly(dG)-poly(dC) molecules; (iii) Separation of the poly(dC) strands from the poly(dG)-strands, which are connected to the avidin; (iv) Assembly of the four G-strands attached to the avidin into tetra-molecular G4-DNA. The average contour length of the formed structures, as measured by AFM, is equal to that of the initial poly(dG)-poly(dC) molecules, suggesting a tetra-molecular mechanism of the G-strands assembly. The height of tetra-molecular G4-nanostructures is larger than that of mono-molecular G4-DNA molecules having similar contour length. The CD spectra of the tetra- and mono-molecular G4-DNA are markedly different, suggesting different structural organization of these two types of molecules. The tetra-molecular G4-DNA nanostructures showed clear electrical polarizability. This suggests that they may be useful for molecular electronics

    Contacting organic molecules by metal evaporation

    No full text
    Reproducible electrical contacts to organic molecules are created non-destructively by indirect electron beam evaporation of Pd onto molecular films on cooled substrates. In contrast, directly evaporated contacts damage the molecules seriously. Our conclusions are based on correlating trends in properties of a series of molecules with systematically varying, exposed functional groups, with trends in the electrical behaviour of Pd/molecule/GaAs junctions, where these same molecules are part of the junctions
    corecore