80 research outputs found

    Vaccination with human anti-trastuzumab anti-idiotype scFv reverses HER2 immunological tolerance and induces tumor immunity in MMTV.f.huHER2(Fo5) mice

    Get PDF
    International audienceINTRODUCTION: Novel adjuvant therapies are needed to prevent metastatic relapses in HER2-expressing breast cancer. Here, we tested whether trastuzumab-selected single-chain Fv (scFv) could be used to develop an anti-idiotype-based vaccine to inhibit growth of HER2-positive tumor cells in vitro and in vivo through induction of long-lasting HER-specific immunity. METHODS: BALB/c mice were immunized with anti-trastuzumab anti-idiotype (anti-Id) scFv (scFv40 and scFv69), which mimic human HER2. Their sera were assessed for the presence of HER2-specific Ab1' antibodies and for their ability to reduce viability of SK-OV-3 cells, a HER2-positive cancer cell line, in nude mice. MMTV.f.huHER2(Fo5) transgenic mice were immunized with scFv40 and scFv69 and, then, growth inhibition of spontaneous HER2-positive mammary tumors, humoral response, antibody isotype as well as splenocyte secretion of IL2 and IFN-γ were evaluated. RESULTS: Adoptively-transferred sera from BALB/c mice immunized with scFv40 and scFv69 contain anti-HER2 Ab1' antibodies that can efficiently inhibit growth of SK-OV-3 cell tumors in nude mice. Similarly, prophylactic vaccination with anti-Id scFv69 fully protects virgin or primiparous FVB-MMTV.f.huHER2(Fo5) females from developing spontaneous mammary tumors. Moreover, such vaccination elicits an anti-HER2 Ab1' immune response together with a scFv69-specific Th1 response with IL2 and IFN-γ cytokine secretion. CONCLUSIONS: Anti-trastuzumab anti-Id scFv69, used as a therapeutic or prophylactic vaccine, protects mice from developing HER2-positive mammary tumors by inducing both anti-HER2 Ab1' antibody production and an anti-HER2 Th2-dependent immune response. These results suggest that scFv69 could be used as an anti-Id-based vaccine for adjuvant therapy of patients with HER2-positive tumors to reverse immunological tolerance to HER2

    Human Papillomavirus-16 E7 Interacts with Glutathione S-Transferase P1 and Enhances Its Role in Cell Survival

    Get PDF
    Background:Human Papillomavirus (HPV)-16 is a paradigm for "high-risk" HPVs, the causative agents of virtually all cervical carcinomas. HPV E6 and E7 viral genes are usually expressed in these tumors, suggesting key roles for their gene products, the E6 and E7 oncoproteins, in inducing malignant transformation.Methodology/Principal Findings:By protein-protein interaction analysis, using mass spectrometry, we identified glutathione S-transferase P1-1 (GSTP1) as a novel cellular partner of the HPV-16 E7 oncoprotein. Following mapping of the region in the HPV-16 E7 sequence that is involved in the interaction, we generated a three-dimensional molecular model of the complex between HPV-16 E7 and GSTP1, and used this to engineer a mutant molecule of HPV-16 E7 with strongly reduced affinity for GSTP1.When expressed in HaCaT human keratinocytes, HPV-16 E7 modified the equilibrium between the oxidized and reduced forms of GSTP1, thereby inhibiting JNK phosphorylation and its ability to induce apoptosis. Using GSTP1-deficient MCF-7 cancer cells and siRNA interference targeting GSTP1 in HaCaT keratinocytes expressing either wild-type or mutant HPV-16 E7, we uncovered a pivotal role for GSTP1 in the pro-survival program elicited by its binding with HPV-16 E7.Conclusions/Significance:This study provides further evidence of the transforming abilities of this oncoprotein, setting the groundwork for devising unique molecular tools that can both interfere with the interaction between HPV-16 E7 and GSTP1 and minimize the survival of HPV-16 E7-expressing cancer cells. © 2009 Mileo et al

    Prion protein-specific antibodies that detect multiple TSE agents with high sensitivity

    Get PDF
    This paper describes the generation, characterisation and potential applications of a panel of novel anti-prion protein monoclonal antibodies (mAbs). The mAbs were generated by immunising PRNP null mice, using a variety of regimes, with a truncated form of recombinant ovine prion protein spanning residues 94–233. Epitopes of specific antibodies were mapped using solid-phase Pepscan analysis and clustered to four distinct regions within the PrP molecule. We have demonstrated the utility of these antibodies by use of Western blotting and immunohistochemistry in tissues from a range of different species affected by transmissible spongiform encephalopathy (TSE). In comparative tests against extensively-used and widely-published, commercially available antibodies, similar or improved results can be obtained using these new mAbs, specifically in terms of sensitivity of detection. Since many of these antibodies recognise native PrPC, they could also be applied to a broad range of immunoassays such as flow cytometry, DELFIA analysis or immunoprecipitation. We are using these reagents to increase our understanding of TSE pathogenesis and for use in potential diagnostic screening assays

    Simultaneous multiple peptide synthesis: A potent tool for hormone analog studies

    No full text
    corecore