25 research outputs found

    Airborne cow allergen, ammonia and particulate matter at homes vary with distance to industrial scale dairy operations: an exposure assessment

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Community exposures to environmental contaminants from industrial scale dairy operations are poorly understood. The purpose of this study was to evaluate the impact of dairy operations on nearby communities by assessing airborne contaminants (particulate matter, ammonia, and cow allergen, Bos d 2) associated with dairy operations inside and outside homes.</p> <p>Methods</p> <p>The study was conducted in 40 homes in the Yakima Valley, Washington State where over 61 dairies operate.</p> <p>Results</p> <p>A concentration gradient was observed showing that airborne contaminants are significantly greater at homes within one-quarter mile (0.4 km) of dairy facilities, outdoor Bos d 2, ammonia, and TD were 60, eight, and two times higher as compared to homes greater than three miles (4.8 km) away. In addition median indoor airborne Bos d 2 and ammonia concentrations were approximately 10 and two times higher in homes within one-quarter mile (0.4 km) compared to homes greater than three miles (4.8 km) away.</p> <p>Conclusions</p> <p>These findings demonstrate that dairy operations increase community exposures to agents with known human health effects. This study also provides evidence that airborne biological contaminants (i.e. cow allergen) associated with airborne particulate matter are statistically elevated at distances up to three miles (4.8 km) from dairy operations.</p

    Health and environmental consequences of the world trade center disaster.

    Get PDF
    The attack on the World Trade Center (WTC) created an acute environmental disaster of enormous magnitude. This study characterizes the environmental exposures resulting from destruction of the WTC and assesses their effects on health. Methods include ambient air sampling; analyses of outdoor and indoor settled dust; high-altitude imaging and modeling of the atmospheric plume; inhalation studies of WTC dust in mice; and clinical examinations, community surveys, and prospective epidemiologic studies of exposed populations. WTC dust was found to consist predominantly (95%) of coarse particles and contained pulverized cement, glass fibers, asbestos, lead, polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs), and polychlorinated furans and dioxins. Airborne particulate levels were highest immediately after the attack and declined thereafter. Particulate levels decreased sharply with distance from the WTC. Dust pH was highly alkaline (pH 9.0-11.0). Mice exposed to WTC dust showed only moderate pulmonary inflammation but marked bronchial hyperreactivity. Evaluation of 10,116 firefighters showed exposure-related increases in cough and bronchial hyperreactivity. Evaluation of 183 cleanup workers showed new-onset cough (33%), wheeze (18%), and phlegm production (24%). Increased frequency of new-onset cough, wheeze, and shortness of breath were also observed in community residents. Follow-up of 182 pregnant women who were either inside or near the WTC on 11 September showed a 2-fold increase in small-for-gestational-age (SGA) infants. In summary, environmental exposures after the WTC disaster were associated with significant adverse effects on health. The high alkalinity of WTC dust produced bronchial hyperreactivity, persistent cough, and increased risk of asthma. Plausible causes of the observed increase in SGA infants include maternal exposures to PAH and particulates. Future risk of mesothelioma may be increased, particularly among workers and volunteers exposed occupationally to asbestos. Continuing follow-up of all exposed populations is required to document the long-term consequences of the disaster
    corecore