1,371 research outputs found

    Quantum-mechanical reaction rate constants from centroid molecular dynamics simulations

    Full text link
    It has been shown recently that in order for real-time correlation functions obtained from centroid molecular dynamics (CMD) simulations to be directly related, without further approximations, to the corresponding quantum correlation functions, one of the operators should be linear in the position and/or momentum [Jang and Voth, J. Chem. Phys. 111, 2357 (1999)]. Standard reaction rate theory relates the rate constant to the flux–Heaviside or the flux–flux correlation functions, which involve two nonlinear operators and therefore cannot be calculated via CMD without further approximations. We present an alternative, and completely equivalent, reaction rate theory which is based on the position–flux correlation function. The new formalism opens the door to more rigorously using CMD for the calculation of quantum reaction rate constants in general many-body systems. The new method is tested on a system consisting of a double-well potential bilinearly coupled to a harmonic bath. The results obtained via CMD are found to be in good agreement with the numerically exact results for a wide range of frictions and temperatures. © 2001 American Institute of Physics.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/71074/2/JCPSA6-115-20-9209-1.pd

    A quantum-mechanical Maxwell's demon

    Get PDF
    A Maxwell's demon is a device that gets information and trades it in for thermodynamic advantage, in apparent (but not actual) contradiction to the second law of thermodynamics. Quantum-mechanical versions of Maxwell's demon exhibit features that classical versions do not: in particular, a device that gets information about a quantum system disturbs it in the process. In addition, the information produced by quantum measurement acts as an additional source of thermodynamic inefficiency. This paper investigates the properties of quantum-mechanical Maxwell's demons, and proposes experimentally realizable models of such devices.Comment: 13 pages, Te

    Time-independent approximations for periodically driven systems with friction

    Full text link
    The classical dynamics of a particle that is driven by a rapidly oscillating potential (with frequency ω\omega) is studied. The motion is separated into a slow part and a fast part that oscillates around the slow part. The motion of the slow part is found to be described by a time-independent equation that is derived as an expansion in orders of ω1\omega^{-1} (in this paper terms to the order ω3\omega^{-3} are calculated explicitly). This time-independent equation is used to calculate the attracting fixed points and their basins of attraction. The results are found to be in excellent agreement with numerical solutions of the original time-dependent problem.Comment: 5 pages, 4 figures. Revised version. Minor change

    Dominant hemisphere functional networks compensate for structural connectivity loss to preserve phonological retrieval with aging.

    Get PDF
    INTRODUCTION: Loss of hemispheric asymmetry during cognitive tasks has been previously demonstrated in the literature. In the context of language, increased right hemisphere activation is observed with aging. Whether this relates to compensation to preserve cognitive function or dedifferentiation implying loss of hemispheric specificity without functional consequence, remains unclear. METHODS: With a multifaceted approach, integrating structural and functional imaging data during a word retrieval task, in a group of younger and older adults with equivalent cognitive performance, we aimed to establish whether interactions between hemispheres or reorganization of dominant hemisphere networks preserve function. We examined functional and structural connectivity on data from our previously published functional activation study. Functional connectivity was measured using psychophysiological interactions analysis from the left inferior frontal gyrus (LIFG) and the left insula (LINS), based on published literature, and the right inferior frontal gyrus (RIFG) based on our previous study. RESULTS: Although RIFG showed increased activation, its connectivity decreased with age. Meanwhile, LIFG and LINS connected more bilaterally in the older adults. White matter integrity, measured by fractional anisotropy (FA) from diffusion tensor imaging, decreased significantly in the older group. Importantly, LINS functional connectivity to LIFG correlated inversely with FA. CONCLUSIONS: We demonstrate that left hemispheric language areas show higher functional connectivity in older adults with intact behavioral performance, and thus, may have a role in preserving function. The inverse correlation of functional and structural connectivity with age is in keeping with emerging literature and merits further investigation with tractography studies and in other cognitive domains

    Performance of discrete heat engines and heat pumps in finite time

    Get PDF
    The performance in finite time of a discrete heat engine with internal friction is analyzed. The working fluid of the engine is composed of an ensemble of noninteracting two level systems. External work is applied by changing the external field and thus the internal energy levels. The friction induces a minimal cycle time. The power output of the engine is optimized with respect to time allocation between the contact time with the hot and cold baths as well as the adiabats. The engine's performance is also optimized with respect to the external fields. By reversing the cycle of operation a heat pump is constructed. The performance of the engine as a heat pump is also optimized. By varying the time allocation between the adiabats and the contact time with the reservoir a universal behavior can be identified. The optimal performance of the engine when the cold bath is approaching absolute zero is studied. It is found that the optimal cooling rate converges linearly to zero when the temperature approaches absolute zero.Comment: 45 pages LaTeX, 25 eps figure

    L\'evy Distribution of Single Molecule Line Shape Cumulants in Low Temperature Glass

    Full text link
    We investigate the distribution of single molecule line shape cumulants, κ1,κ2,...\kappa_1,\kappa_2,..., in low temperature glasses based on the sudden jump, standard tunneling model. We find that the cumulants are described by L\'evy stable laws, thus generalized central limit theorem is applicable for this problem.Comment: 5 pages, 3 figure

    Improved assay to detect Plasmodium falciparum using an uninterrupted, semi-nested PCR and quantitative lateral flow analysis

    Get PDF
    BACKGROUND: A rapid, non-invasive, and inexpensive point-of-care (POC) diagnostic for malaria followed by therapeutic intervention would improve the ability to control infection in endemic areas. METHODS: A semi-nested PCR amplification protocol is described for quantitative detection of Plasmodium falciparum and is compared to a traditional nested PCR. The approach uses primers that target the P. falciparum dihydrofolate reductase gene. RESULTS: This study demonstrates that it is possible to perform an uninterrupted, asymmetric, semi-nested PCR assay with reduced assay time to detect P. falciparum without compromising the sensitivity and specificity of the assay using saliva as a testing matrix. CONCLUSIONS: The development of this PCR allows nucleic acid amplification without the need to transfer amplicon from the first PCR step to a second reaction tube with nested primers, thus reducing both the chance of contamination and the time for analysis to < two hours. Analysis of the PCR amplicon yield was adapted to lateral flow detection using the quantitative up-converting phosphor (UCP) reporter technology. This approach provides a basis for migration of the assay to a POC microfluidic format. In addition the assay was successfully evaluated with oral samples. Oral fluid collection provides a simple non-invasive method to collect clinical samples

    Operational approach to open dynamics and quantifying initial correlations

    Get PDF
    A central aim of physics is to describe the dynamics of physical systems. Schrodinger's equation does this for isolated quantum systems. Describing the time evolution of a quantum system that interacts with its environment, in its most general form, has proved to be difficult because the dynamics is dependent on the state of the environment and the correlations with it. For discrete processes, such as quantum gates or chemical reactions, quantum process tomography provides the complete description of the dynamics, provided that the initial states of the system and the environment are independent of each other. However, many physical systems are correlated with the environment at the beginning of the experiment. Here, we give a prescription of quantum process tomography that yields the complete description of the dynamics of the system even when the initial correlations are present. Surprisingly, our method also gives quantitative expressions for the initial correlation.Comment: Completely re-written for clarity of presentation. 15 pages and 2 figure
    corecore