37 research outputs found

    The Mechanism Underlying the Antibacterial Activity of Shikonin against Methicillin-Resistant Staphylococcus aureus

    Get PDF
    Shikonin (SKN), a highly liposoluble naphthoquinone pigment isolated from the roots of Lithospermum erythrorhizon, is known to exert antibacterial, wound-healing, anti-inflammatory, antithrombotic, and antitumor effects. The aim of this study was to examine SKN antibacterial activity against methicillin-resistant Staphylococcus aureus (MRSA). The SKN was analyzed in combination with membrane-permeabilizing agents Tris and Triton X-100, ATPase inhibitors sodium azide and N,N′-dicyclohexylcarbodiimide, and S. aureus-derived peptidoglycan; the effects on MRSA viability were evaluated by the broth microdilution method, time-kill test, and transmission electron microscopy. Addition of membrane-permeabilizing agents or ATPase inhibitors together with a low dose of SKN potentiated SKN anti-MRSA activity, as evidenced by the reduction of MRSA cell density by 75% compared to that observed when SKN was used alone; in contrast, addition of peptidoglycan blocked the antibacterial activity of SKN. The results indicate that the anti-MRSA effect of SKN is associated with its affinity to peptidoglycan, the permeability of the cytoplasmic membrane, and the activity of ATP-binding cassette (ABC) transporters. This study revealed the potential of SKN as an effective natural antibiotic and of its possible use to substantially reduce the use of existing antibiotic may also be important for understanding the mechanism underlying the antibacterial activity of natural compounds

    Whole-genome, transcriptome, and methylome analyses provide insights into the evolution of platycoside biosynthesis in Platycodon grandiflorus, a medicinal plant

    Get PDF
    Triterpenoid saponins (TSs) are common plant defense phytochemicals with potential pharmaceutical properties. Platycodon grandiflorus (Campanulaceae) has been traditionally used to treat bronchitis and asthma in East Asia. The oleanane-type TSs, platycosides, are a major component of the P. grandiflorus root extract. Recent studies show that platycosides exhibit anti-inflammatory, antiobesity, anticancer, antiviral, and antiallergy properties. However, the evolutionary history of platycoside biosynthesis genes remains unknown. In this study, we sequenced the genome of P. grandiflorus and investigated the genes involved in platycoside biosynthesis. The draft genome of P. grandiflorus is 680.1Mb long and contains 40,017 protein-coding genes. Genomic analysis revealed that the CYP716 family genes play a major role in platycoside oxidation. The CYP716 gene family of P. grandiflorus was much larger than that of other Asterid species. Orthologous gene annotation also revealed the expansion of beta -amyrin synthases (bASs) in P. grandiflorus, which was confirmed by tissue-specific gene expression. In these expanded gene families, we identified key genes showing preferential expression in roots and association with platycoside biosynthesis. In addition, whole-genome bisulfite sequencing showed that CYP716 and bAS genes are hypomethylated in P. grandiflorus, suggesting that epigenetic modification of these two gene families affects platycoside biosynthesis. Thus whole-genome, transcriptome, and methylome data of P. grandiflorus provide novel insights into the regulation of platycoside biosynthesis by CYP716 and bAS gene families

    Brazilin Inhibits Growth and Induces Apoptosis in Human Glioblastoma Cells

    No full text
    Brazilin, isolated from the methanol extract of the heart wood of Caesalpinia sappan, sensitizes cancer cells to apoptosis. Glioblastoma multiforme (GBM), which accounts for most cases of central nervous system malignancy, has a very poor prognosis and lacks effective therapeutic interventions. We, therefore, investigated the effects of different concentrations of and different periods of exposure to brazilin on cell proliferation and apoptosis in the glioma U87 cell line. Cell proliferation was investigated by MTT assays and growth curve analysis, apoptosis was assessed by FACS analysis and western blot studies. Brazilin showed dose-dependent inhibition of cell proliferation and induction of apoptosis in glioma cells. It also increased the ratio of cleaved poly-(ADP)-ribose polymerase and decreased the expression of caspase-3 and caspase-7

    Effect of Ginseng Extracts on the Improvement of Osteopathic and Arthritis Symptoms in Women with Osteopenia: A Randomized, Double-Blind, Placebo-Controlled Clinical Trial

    No full text
    Ginsenosides are active compounds that are beneficial to bone metabolism and have anti-osteoporosis properties. However, very few clinical investigations have investigated the effect of ginseng extract (GE) on bone metabolism. This study aims to determine the effect of GE on improving bone metabolism and arthritis symptoms in postmenopausal women with osteopenia. A 12-week randomized, double-blind, placebo-controlled clinical trial was conducted. A total of 90 subjects were randomly divided into a placebo group, GE 1 g group, and GE 3 g group for 12 weeks based on the random 1:1:1 assignment to these three groups. The primary outcome is represented by bone metabolism indices consisting of serum osteocalcin (OC), urine deoxypyridinoline (DPD), and DPD/OC measurements. Secondary outcomes were serum CTX, NTX, Ca, P, BsALP, P1NP, OC/CTX ratio, and WOMAC index. The GE 3 g group had a significantly increased serum OC concentration. Similarly, the GE 3 g group showed a significant decrease in the DPD/OC ratio, representing bone resorption and bone formation. Moreover, among all the groups, the GE 3 g group demonstrated appreciable improvements in the WOMAC index scores. In women with osteopenia, intake of 3 g of GE per day over 12 weeks notably improved the knee arthritis symptoms with improvements in the OC concentration and ratios of bone formation indices like DPD/OC

    Comparison of Antivirulence Activities of Black Ginseng against Methicillin-Resistant Staphylococcus aureus According to the Number of Repeated Steaming and Drying Cycles

    No full text
    Korean ginseng has been widely used in Eastern medicine for thousands of years. The contents of the compounds in ginseng roots change depending on the amount of steaming and drying, and the drying method used. Black ginseng (BG) is the Korean ginseng processed by repeated steaming and drying. In this study, 5-year-old fresh Korean ginseng roots were steamed and dried 3 or 5 times, and we investigated how many cycles of steaming and drying are preferable for antivirulence activities against methicillin-resistant Staphylococcus aureus (MRSA). As a result, the antivirulence activities was increased by the treatment of BG that was steamed and dried three times, and the effect was further increased by five-time processed BG. Moreover, an ELISA showed that the TNF-α production of RAW264.7 cells stimulated by MRSA supernatants was inhibited by subinhibitory concentrations of BG extract. The expression of Hla, staphylococcal enterotoxin A (SEA), and staphylococcal enterotoxin B (SEB), an important virulence factor in the pathogenicity of MRSA, was found to decrease when bacterial cells were treated with BG extract. The antivirulence activities of BG were not simply due to pathogen growth inhibition; the BG extract was shown to decrease agrA, hla, sea, and seb expression in MRSA. Therefore, BG strongly reduces the secretion of the virulence factors produced by Staphylococcus aureus, suggesting that a BG-based structure may be used for the development of drugs aimed at staphylococcal virulence-related exoproteins. This study suggests that BG could be used as a promising natural compound in the food and pharmaceutical industry

    Antihypertensive Effect of Ethanolic Extract from Acanthopanax sessiliflorus

    No full text
    Acanthopanax sessiliflorus (Rupr. & Maxim.) Seem., which belongs to the Araliaceae family, mainly inhabits Korea, China, and Japan. Traditionally, Acanthopanax species have been used as treatment for several diseases such as diabetes, tumors, and rheumatoid arthritis. Especially, its fruits have many biological functions including antitumor, immunostimulating, antithrombosis, and antiplatelet activities. Recently, the extract of A. sessiliflorus fruit has been reported to have antithrombotic and antiplatelet activities related to the alleviation of hypertension. Therefore, we investigated the antihypertensive effect of ethanolic extract from A. sessiliflorus fruits (DHP1501) through in vivo, ex vivo, and in vitro studies. In this study, DHP1501 demonstrated free radical scavenging capacity, enhanced endothelial nitric oxide (NO) production, and inhibited angiotensin-converting enzyme (ACE) activity in spontaneously hypertensive rats (SHRs), resulting in the improvement of vascular relaxation and decrease in blood pressure in the hypertensive animal model. These results suggest that A. sessiliflorus fruit extract may be a promising functional material for the prevention and treatment of hypertension. Furthermore, this study demonstrated the utility of MS-based active compounds for the quality control of DHP1501

    Anti-Obesity Activity in 3T3-L1 Cells of Cornus officinalis Fruits Harvested at Different Times

    No full text
    Obesity, a metabolic disease linked to several other diseases, is emerging as a global problem. We determined the harvest time that maximized the anti-obesity effect by evaluating the inhibition of lipid accumulation in 3T3-L1 cells treated with fruits of Cornus officinalis. FS1 (pericarp + seeds, harvested 15 September) showed excellent anti-obesity activity (Oil Red O; 26.12 ± 1.37% vs. MDI) and inhibited the expression of PPAR-γ (0.05 ± 0.01 ford vs. MDI), C/EBPα (0.03 ± 0.02 ford vs. MDI), and C/EBPβ (0.33 ± 0.07 ford vs. MDI) at 200 μg/mL. The antioxidant activity of FS1 was also the most effective. In addition, FS1 contained higher levels of active ingredients than samples harvested in other periods. Especially, content of loganin, verbenalin, and sweroside was high. In terms of anti-obesity activity and functional components, immature COF (FS1) was the best, and these results indicate that it is necessary to adjust the harvest time, when used as an anti-obesity agent

    Potentiating activity of rhein in targeting of resistance genes in methicillin-resistant Staphylococcus aureus

    No full text
    Objective: To investigate the synergistic effect between rhein (RHE) and oxacillin against Staphylococcus aureus (MRSA) at the gene level. Method: A minimum inhibitory concentration and checkerboard dilution test were conducted to evaluate antibacterial activity. Reverse transcriptase polymerase chain reaction was conducted to investigate the gene expressions. Results: RHE exhibited a minimum inhibitory concentration of 62.5-250.0 μg/mL against various MRSA strains and the reference strain, respectively. As revealed by the checkerboard assay, a combination of RHE and oxacillin exhibited synergistic or partially synergistic effects against MRSA strains. RHE decreased the expressions of mecA/blaZ in a dose-dependent manner. RHE also decreased the expressions of the regulator genes mecI/blaI and mecR1/blaR1. Conclusions: We suggest that RHE affects the activity of mecR1/blaR1, which is located in the cell membrane of MRSA and results in the suppression of mecA/mecI/mecR1 and blaZ/blaI/ blaR1 gene expressions
    corecore