40 research outputs found

    Hexanuclear Ln6L6 Complex Formation by using an Unsymmetric Ligand

    Get PDF
    Multinuclear, self‐assembled lanthanide complexes present clear opportunities as sensors and imaging agents. Despite the widely acknowledged potential of this class of supramolecule, synthetic and characterization challenges continue to limit systematic studies into their self‐assembly restricting the number and variety of lanthanide architectures reported relative to their transition metal counterparts. Here we present the first study evaluating the effect of ligand backbone symmetry on multinuclear lanthanide complex self‐assembly. Replacement of a symmetric ethylene linker with an unsymmetric amide at the centre of a homoditopic ligand governs formation of an unusual Ln6L6 complex with coordinatively unsaturated metal centres. The choice of triflate as a counterion, and the effect of ionic radii are shown to be critical for formation of the Ln6L6 complex. The atypical Ln6L6 architecture is characterized using a combination of mass spectrometry, luminescence, DOSY NMR and EPR spectroscopy measurements. Luminescence experiments support clear differences between comparable Eu6L6 and Eu2L3 complexes, with relatively short luminescent lifetimes and low quantum yields observed for the Eu6L6 structure indicative of non‐radiative decay processes. Synthesis of the Gd6L6analogue allows three distinct Gd···Gd distance measurements to be extracted using homo‐RIDME EPR experiments

    Modern Electrospray Ionization Mass Spectrometry Techniques for the Characterisation of Supramolecules and Coordination Compounds

    No full text
    Mass spectrometry is routinely used for myriad applications in clinical, industrial, and research laboratories worldwide. Developments in the areas of ionisation sources, high-resolution mass analysers, tandem mass spectrometry, and ion mobility have significantly extended the repertoire of mass spectrometrists, however for coordination compounds and supramolecules, mass spectrometry remains underexplored and arguably underappreciated. Here, the reader is guided through different tools of modern electrospray ionization mass spectrometry that are suitable for larger inorganic complexes. All steps, from sample preparation and technical details to data analysis and interpretation are discussed. The main target audience of this tutorial are synthetic chemists as well as technicians/mass spectrometrists with little experience in characterising labile inorganic compounds

    Influence of β-Cyclodextrin Methylation on Host-Guest Complex Stability: A Theoretical Study of Intra- and Intermolecular Interactions as Well as Host Dimer Formation

    No full text
    Understanding the non-covalent interactions in host-guest complexes is crucial to their stability, design and applications. Here, we use density functional theory to compare the ability of β-cyclodextrin (β-CD) and heptakis(2,6-di-O-methyl)-β-cyclodextrin (DM-β-CD) to encapsulate the model guest phenol. For both macrocycles, we quantify the intramolecular interactions before and after the formation of the complex, as well as the intermolecular host-guest and host-host dimer interactions. These are individually classified as van der Waals interactions or hydrogen bonds, respectively. The results show a stronger intramolecular binding energy of β-CD, with the absolute difference being −5.53 kcal/mol relative to DM-β-CD. Consequently, the intermolecular interactions of both cyclodextrins with phenol are affected, such that the free binding energy calculated for the DM-β-CD/phenol complex (−5.23 kcal/mol) is ≈50% more negative than for the complex with β-CD (−2.62 kcal/mol). The latter is in excellent agreement with the experimental data (−2.69 kcal/mol), which validates the level of theory (B97-3c) used. Taken together, the methylation of β-CD increases the stability of the host-guest complex with the here studied guest phenol through stronger van der Waals interactions and hydrogen bonds. We attribute this to the disruption of the hydrogen bond network in the primary face of β-CD upon methylation, which influences the flexibility of the host toward the guest as well as the strength of the intermolecular interactions. Our work provides fundamental insights into the impact of different non-covalent interactions on host-guest stability, and we suggest that this theoretical framework can be adapted to other host-guest complexes to evaluate and quantify their non-covalent interactions

    Ion Mobility Mass Spectrometry for Synthetic Molecules: Expanding the Analytical Toolbox

    No full text
    Understanding the composition, structure and stability of synthetic molecules is crucial for their design, yet currently the analytical tools commonly used do not readily provide this information, particularly for larger complex analytes above M = 500 Da. In this perspective, we show how ion mobility mass spectrometry (IM-MS), in combination with tandem mass spectrometry, computational methods and other complementary techniques, can be used to structurally characterise new synthetic molecules, make and predict new complexes, monitor disassembly processes and determine stability. Using IM-MS, we present an experimental and computational framework for the analysis and design of complex molecular architectures such as (metallo)supramolecular cages, interlocked molecules, rotaxanes, dendrimers, polymers and host-guest complexes
    corecore