4 research outputs found

    Aggrecan, versican and type VI collagen are components of annular translamellar crossbridges in the intervertebral disc

    No full text
    The aim of this study was to undertake a detailed analysis of the structure of the inter and intra-lamellar regions of the annulus fibrosus. A total of 30 newborn to 6 year-old lumbar ovine intervertebral discs (IVDs) were fixed and decalcified en-bloc to avoid differential swelling artifacts during processing and vertical mid-sagittal, and horizontal 4 μm sections were cut. These were stained with toluidine blue to visualise anionic proteoglycan (PG) species, H & E for cellular morphology and picro-sirius red (viewed under polarized light) to examine collagenous organization. Immunolocalisations were also undertaken using anti-PG core-protein and glycosaminoglycan (GAG) side chain antibodies to native chondroitin sulphate (CS), Δ C-4-S and C-6-S unsaturated stubs generated by chondroitinase ABC digestion of CS, keratan sulphate (KS), and with antibodies to type I, II, VI, IX and X collagens. Trans-lamellar cross bridges (TLCBs), discontinuities in annular lamellae’s which provide transverse interconnections, stained prominently with toluidine blue in the adult IVDs but less so in the newborn IVDs. In adult discs TLCBs were evident in both the posterior and anterior AF where they extended from the outermost annular lamellae almost to the transitional zone extending across as many as eight lamellar layers displaying a characteristic circuitous, meandering, serpentine type course. There were significantly fewer TLCBs in 2 week-old compared with skeletally mature sheep and there was a further increase from 2 to 6 years. Immunolocalisation of perlecan delineated blood vessels in the TLBs of the newborn but not adult IVDs extending into the mid AF. In contrast adult but not 2 week-old TLCBs were immunpositive for C-4-S, C-6-S, KS, aggrecan, versican and type VI collagen. The change in number and matrix components of the trans-lamellar cross bridges with skeletal maturity and ageing suggest that they represent an adaptation to the complex biomechanical forces occurring in the annulus fibrosus

    Biglycan and fibromodulin fragmentation correlates with temporal and spatial annular remodelling in experimentally injured ovine intervertebral discs

    No full text
    This study evaluated spatial and temporal extracellular matrix changes, induced by controlled surgical defects in the outer third of the annulus fibrosus (AF) of ovine intervertebral discs (IVDs). Thirty-two 4 year old sheep received a 4 mm deep × 10 mm wide standard annular surgical incision in the L1L2 and L3L4 IVDs (lesion group), 32 sheep were also subjected to the same surgical approach but the AF was not incised (sham-operated controls). Remodeling of the IVD matrix in the lesion and sham discs was assessed histochemically at 3, 6,12 and 26 month post operation (PO). Discs were also dissected into annular lesion site and contra-lateral AF and NP and equivalent zones in the sham sheep group, extracted with GuHCl, dialysed, freeze dried, digested with chondroitinase ABC/keratanase-I and aliquots examined for small leucine repeat proteoglycan (SLRP) core protein species by Western blotting using C-terminal antibodies to decorin, biglycan, lumican and fibromodulin and monoclonal antibody (Mab) 2B6 to unsaturated stub epitopes on chondroitin-4-sulphate generated by chondroitinase ABC. Masson Trichrome and Picrosirius red staining demonstrated re-organisation of the outermost collagenous lamellae in the incised discs 3–6 month PO. Toluidine blue staining also demonstrated a focal loss of anionic proteoglycan (PG) from the annular lesion 3–6 month PO with partial recovery of PG levels by 26 month. Specific fragments of biglycan and fibromodulin were associated with remodeling of the AF 12–26 month PO in the lesion IVDs but were absent from the NP of the lesion discs or all tissue zones in the sham animal group. Fragments of decorin were also observed in lesion zone extracts from 3 to 6 months but diminished after this. Isolation and characterization of the biglycan/fibromodulin fragments may identify them as prospective biomarkers of annular remodeling and characterization of the enzyme systems responsible for their generation may identify therapeutic target molecules
    corecore