76 research outputs found

    ALTERATION OF PACEMAKER THRESHOLD BY DRUG AND PHYSIOLOGICAL FACTORS

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/73776/1/j.1749-6632.1969.tb34129.x.pd

    Repolarization heterogeneity and rate dependency in a canine rapid pacing model of heart failure

    Get PDF
    Repolarization heterogeneity and rate dependency have long been established as factors contributing to arrhythmogenic risk. However there are conflicting observations regarding the nature and extent of ventricular repolarization heterogeneity that complicate understanding of arrhythmogenic mechanisms. In order to explore these disparate findings, we studied ventricular repolarization heterogeneity and rate dependency in a canine, rapid pacing model of heart failure

    Rate-dependent propagation of cardiac action potentials in a one-dimensional fiber

    Full text link
    Action potential duration (APD) restitution, which relates APD to the preceding diastolic interval (DI), is a useful tool for predicting the onset of abnormal cardiac rhythms. However, it is known that different pacing protocols lead to different APD restitution curves (RCs). This phenomenon, known as APD rate-dependence, is a consequence of memory in the tissue. In addition to APD restitution, conduction velocity restitution also plays an important role in the spatiotemporal dynamics of cardiac tissue. We present new results concerning rate-dependent restitution in the velocity of propagating action potentials in a one-dimensional fiber. Our numerical simulations show that, independent of the amount of memory in the tissue, waveback velocity exhibits pronounced rate-dependence and the wavefront velocity does not. Moreover, the discrepancy between waveback velocity RCs is most significant for small DI. We provide an analytical explanation of these results, using a system of coupled maps to relate the wavefront and waveback velocities. Our calculations show that waveback velocity rate-dependence is due to APD restitution, not memory.Comment: 17 pages, 7 figure

    The contribution of refractoriness to arrhythmic substrate in hypokalemic Langendorff-perfused murine hearts

    Get PDF
    The clinical effects of hypokalemia including action potential prolongation and arrhythmogenicity suppressible by lidocaine were reproduced in hypokalemic (3.0 mM K(+)) Langendorff-perfused murine hearts before and after exposure to lidocaine (10 μM). Novel limiting criteria for local and transmural, epicardial, and endocardial re-excitation involving action potential duration (at 90% repolarization, APD(90)), ventricular effective refractory period (VERP), and transmural conduction time (Δlatency), where appropriate, were applied to normokalemic (5.2 mM K(+)) and hypokalemic hearts. Hypokalemia increased epicardial APD(90) from 46.6 ± 1.2 to 53.1 ± 0.7 ms yet decreased epicardial VERP from 41 ± 4 to 29 ± 1 ms, left endocardial APD(90) unchanged (58.2 ± 3.7 to 56.9 ± 4.0 ms) yet decreased endocardial VERP from 48 ± 4 to 29 ± 2 ms, and left Δlatency unchanged (1.6 ± 1.4 to 1.1 ± 1.1 ms; eight normokalemic and five hypokalemic hearts). These findings precisely matched computational predictions based on previous reports of altered ion channel gating and membrane hyperpolarization. Hypokalemia thus shifted all re-excitation criteria in the positive direction. In contrast, hypokalemia spared epicardial APD(90) (54.8 ± 2.7 to 60.6 ± 2.7 ms), epicardial VERP (84 ± 5 to 81 ± 7 ms), endocardial APD(90) (56.6 ± 4.2 to 63.7 ± 6.4 ms), endocardial VERP (80 ± 2 to 84 ± 4 ms), and Δlatency (12.5 ± 6.2 to 7.6 ± 3.4 ms; five hearts in each case) in lidocaine-treated hearts. Exposure to lidocaine thus consistently shifted all re-excitation criteria in the negative direction, again precisely agreeing with the arrhythmogenic findings. In contrast, established analyses invoking transmural dispersion of repolarization failed to account for any of these findings. We thus establish novel, more general, criteria predictive of arrhythmogenicity that may be particularly useful where APD(90) might diverge sharply from VERP

    ACC/AHA/HRS 2008 guidelines for device-based therapy of cardiac rhythm abnormalities: A report of the American College of Cardiology/American Heart Association Task Force on practice guidelines (Writing Committee to revise the ACC/AHA/NASPE 2002 guideline update for implantation of cardiac pacemakers and antiarrhythmia devices)

    Get PDF
    This revision of the “ACC/AHA/NASPE Guidelines for Implantation of Cardiac Pacemakers and Antiarrhythmia Devices” updates the previous versions published in 1984, 1991, 1998, and 2002. Revision of the statement was deemed necessary for multiple reasons: 1) Major studies have been reported that have advanced our knowledge of the natural history of bradyarrhythmias and tachyarrhythmias, which may be treated optimally with device therapy; 2) there have been tremendous changes in the management of heart failure that involve both drug and device therapy; and 3) major advances in the technology of devices to treat, delay, and even prevent morbidity and mortality from bradyarrhythmias, tachyarrhythmias, and heart failure have occurred
    • …
    corecore