8 research outputs found

    Feeding and damage‐induced volatile cues make beetles disperse and produce a more even distribution of damage for sagebrush

    Get PDF
    Induced plant responses to herbivory are common, and we have learned a lot about the mechanisms of induced resistance and their effects on herbivore performance. We know less about their effects on herbivore behaviour and especially on spatial patterns of damage. Theoretical models predict that induced responses can cause patterns of damage to become aggregated, random or even. A recent model predicted that informed herbivore movement coupled with communication between plants would make damage more even within individual plants. We tested these predictions in the field using a specialist beetle Trirhabda pilosa that feeds on sagebrush Artemisia tridentata. Both the beetle and the plant are well-documented to respond to damage-induced volatile cues. Beetle larvae were more likely to move from damaged leaves and leaves that had been exposed to volatiles from nearby damaged leaves compared to undamaged control leaves. Previous laboratory results indicated that beetles were more likely to choose undamaged leaves compared to damaged leaves or those exposed to volatile cues of damage. A comparison of damage patterns early in the season and after completion of beetle feeding revealed that variance in damage among branches decreased as the season progressed; that is, damage became more evenly distributed among the branches within a plant. Larvae damaged many leaves on a plant but removed relatively little tissue from each leaf. Herbivore movement and the spatial patterns of damage that it creates can be important in determining effects on plant fitness and other population processes. Dispersion of damage deserves more consideration in plant-herbivore studies

    Plant size, latitude, and phylogeny explain within-population variability in herbivory

    Full text link
    Interactions between plants and herbivores are central in most ecosystems, but their strength is highly variable. The amount of variability within a system is thought to influence most aspects of plant-herbivore biology, from ecological stability to plant defense evolution. Our understanding of what influences variability, however, is limited by sparse data. We collected standardized surveys of herbivory for 503 plant species at 790 sites across 116° of latitude. With these data, we show that within-population variability in herbivory increases with latitude, decreases with plant size, and is phylogenetically structured. Differences in the magnitude of variability are thus central to how plant-herbivore biology varies across macroscale gradients. We argue that increased focus on interaction variability will advance understanding of patterns of life on Earth

    Plant size, latitude, and phylogeny explain within-population variability in herbivory

    Full text link
    Interactions between plants and herbivores are central in most ecosystems, but their strength is highly variable. The amount of variability within a system is thought to influence most aspects of plant-herbivore biology, from ecological stability to plant defense evolution. Our understanding of what influences variability, however, is limited by sparse data. We collected standardized surveys of herbivory for 503 plant species at 790 sites across 116° of latitude. With these data, we show that within-population variability in herbivory increases with latitude, decreases with plant size, and is phylogenetically structured. Differences in the magnitude of variability are thus central to how plant-herbivore biology varies across macroscale gradients. We argue that increased focus on interaction variability will advance understanding of patterns of life on Earth

    Plant size, latitude, and phylogeny explain within-population variability in herbivory

    Full text link
    International audienceInteractions between plants and herbivores are central in most ecosystems, but their strength is highly variable. The amount of variability within a system is thought to influence most aspects of plant-herbivore biology, from ecological stability to plant defense evolution. Our understanding of what influences variability, however, is limited by sparse data. We collected standardized surveys of herbivory for 503 plant species at 790 sites across 116° of latitude. With these data, we show that within-population variability in herbivory increases with latitude, decreases with plant size, and is phylogenetically structured. Differences in the magnitude of variability are thus central to how plant-herbivore biology varies across macroscale gradients. We argue that increased focus on interaction variability will advance understanding of patterns of life on Earth

    Plant size, latitude, and phylogeny explain within-population variability in herbivory

    Full text link
    corecore