2,779 research outputs found
Evaluating the summer night sky brightness at a research field site on Lake Stechlin in northeastern Germany
We report on luminance measurements of the summer night sky at a field site
on a freshwater lake in northeastern Germany (Lake Stechlin) to evaluate the
amount of artificial skyglow from nearby and distant towns in the context of a
planned study on light pollution. The site is located about 70 km north of
Berlin in a rural area possibly belonging to one of the darkest regions in
Germany. Continuous monitoring of the zenith sky luminance between June and
September 2015 was conducted utilizing a Sky Quality Meter. With this device,
typical values for clear nights in the range of 21.5-21.7
magarcsec were measured, which is on the order of the natural sky
brightness during starry nights. On overcast nights, values down to 22.84
magarcsec were obtained, which is about one third as bright as on
clear nights. The luminance measured on clear nights as well as the darkening
with the presence of clouds indicate that there is very little influence of
artificial skyglow on the zenith sky brightness at this location. Furthermore,
fish-eye lens sky imaging luminance photometry was performed with a digital
single-lens reflex camera on a clear night in the absence of moonlight. The
photographs unravel several distant towns as possible sources of light
pollution on the horizon. However, the low level of artificial skyglow makes
the field site at Lake Stechlin an excellent location to study the effects of
skyglow on a lake ecosystem in a controlled fashion.Comment: 20 pages, 8 figures, Journal of Quantitative Spectroscopy and
Radiative Transfer 201
A Beam Driven Plasma-Wakefield Linear Collider: From Higgs Factory to Multi-TeV
Plasma wakefield acceleration (PWFA) holds much promise for advancing the
energy frontier because it can potentially provide a 1000-fold or more increase
in acceleration gradient with excellent power efficiency in respect with
standard technologies. Most of the advances in beam-driven plasma wakefield
acceleration were obtained by a UCLA/USC/SLAC collaboration working at the SLAC
FFTB[ ]. These experiments have shown that plasmas can accelerate and focus
both electron and positron high energy beams, and an accelerating gradient in
excess of 50 GeV/m can be sustained in an 85 cm-long plasma. The FFTB
experiments were essentially proof-of-principle experiments that showed the
great potential of plasma accelerators.
The FACET[ ] test facility at SLAC will in the period 2012-2016 further study
several issues that are directly related to the applicability of PWFA to a
high-energy collider, in particular two-beam acceleration where the witness
beam experiences high beam loading (required for high efficiency), small energy
spread and small emittance dilution (required to achieve luminosity).
The PWFA-LC concept presented in this document is an attempt to find the best
design that takes advantage of the PWFA, identify the critical parameters to be
achieved and eventually the necessary R&D to address their feasibility. It best
benefits from the extensive R&D that has been performed for conventional rf
linear colliders during the last twenty years, especially ILC[ ] and CLIC[ ],
with a potential for a comparably lower power consumption and cost.Comment: Submitted to the proceedings of the Snowmass Process CSS2013. Work
supported in part by the U.S. Department of Energy under contract number
DE-AC02-76SF0051
Three-dimensional Models of Core-collapse Supernovae From Low-mass Progenitors With Implications for Crab
We present 3D full-sphere supernova simulations of non-rotating low-mass (~9
Msun) progenitors, covering the entire evolution from core collapse through
bounce and shock revival, through shock breakout from the stellar surface,
until fallback is completed several days later. We obtain low-energy explosions
[~(0.5-1.0)x 10^{50} erg] of iron-core progenitors at the low-mass end of the
core-collapse supernova (LMCCSN) domain and compare to a super-AGB (sAGB)
progenitor with an oxygen-neon-magnesium core that collapses and explodes as
electron-capture supernova (ECSN). The onset of the explosion in the LMCCSN
models is modelled self-consistently using the Vertex-Prometheus code, whereas
the ECSN explosion is modelled using parametric neutrino transport in the
Prometheus-HOTB code, choosing different explosion energies in the range of
previous self-consistent models. The sAGB and LMCCSN progenitors that share
structural similarities have almost spherical explosions with little metal
mixing into the hydrogen envelope. A LMCCSN with less 2nd dredge-up results in
a highly asymmetric explosion. It shows efficient mixing and dramatic shock
deceleration in the extended hydrogen envelope. Both properties allow fast
nickel plumes to catch up with the shock, leading to extreme shock deformation
and aspherical shock breakout. Fallback masses of <~5x10^{-3} Msun have no
significant effects on the neutron star (NS) masses and kicks. The anisotropic
fallback carries considerable angular momentum, however, and determines the
spin of the newly-born NS. The LMCCSNe model with less 2nd dredge-up results in
a hydrodynamic and neutrino-induced NS kick of >40 km/s and a NS spin period of
~30 ms, both not largely different from those of the Crab pulsar at birth.Comment: 47 pages, 27 figures, 6 tables; minor revisions, accepted by MNRA
Photoluminescence study of terbium-exchanged ultrastable Y zeolites: number of species, photoluminescence decays, and decay-associated spectra
Terbium-exchanged ultrastable Y (USY) zeolites were investigated by using time-resolved photoluminescence spectroscopy techniques and methods. To determine the distribution of terbium species in USY zeolites together with their photoluminescence properties, several analysis methods for the time-resolved luminescence spectra were used such as the area normalization of time-resolved photoluminescence spectra, singular value decomposition, global nonlinear least squares, and the maximum entropy. Except for a questionable long lifetime, small contribution of a terbium species with lifetime of 1.9Âż2.1 ms, all the experimental and analysis results converged to a two terbium species distribution with lifetimes varying between 410Âż440 and 1000Âż1100 ÎĽ s . The effects of the silylation of terbium-exchanged USY zeolites with phenyl-, vinyl-, and hexadecyltrimethoxysilanes on the lanthanideÂżs photoluminescence properties were also described
Positron Acceleration in Plasma Wakefields
Plasma acceleration has emerged as a promising technology for future particle
accelerators, particularly linear colliders. Significant progress has been made
in recent decades toward high-efficiency and high-quality acceleration of
electrons in plasmas. However, this progress does not generalize to
acceleration of positrons, as plasmas are inherently charge asymmetric. Here,
we present a comprehensive review of historical and current efforts to
accelerate positrons using plasma wakefields. Proposed schemes that aim to
increase the energy efficiency and beam quality are summarised and
quantitatively compared. A dimensionless metric that scales with the
luminosity-per-beam power is introduced, indicating that positron-acceleration
schemes are currently below the ultimate requirement for colliders. The primary
issue is electron motion; the high mobility of plasma electrons compared to
plasma ions, which leads to non-uniform accelerating and focusing fields that
degrade the beam quality of the positron bunch, particularly for high
efficiency acceleration. Finally, we discuss possible mitigation strategies and
directions for future research.Comment: 24 pages (30 pages with references), 22 figure
Local Detection of Quantum Correlations with a Single Trapped Ion
As one of the most striking features of quantum mechanics, quantum
correlations are at the heart of quantum information science. Detection of
correlations usually requires access to all the correlated subsystems. However,
in many realistic scenarios this is not feasible since only some of the
subsystems can be controlled and measured. Such cases can be treated as open
quantum systems interacting with an inaccessible environment. Initial
system-environment correlations play a fundamental role for the dynamics of
open quantum systems. Following a recent proposal, we exploit the impact of the
correlations on the open-system dynamics to detect system-environment quantum
correlations without accessing the environment. We use two degrees of freedom
of a trapped ion to model an open system and its environment. The present
method does not require any assumptions about the environment, the interaction
or the initial state and therefore provides a versatile tool for the study of
quantum systems.Comment: 6 Pages, 5 Figures + 6 Pages, 1 Figure of Supplementary Materia
- …