929 research outputs found

    Extracting non-linear integrate-and-fire models from experimental data using dynamic I–V curves

    Get PDF
    The dynamic I–V curve method was recently introduced for the efficient experimental generation of reduced neuron models. The method extracts the response properties of a neuron while it is subject to a naturalistic stimulus that mimics in vivo-like fluctuating synaptic drive. The resulting history-dependent, transmembrane current is then projected onto a one-dimensional current–voltage relation that provides the basis for a tractable non-linear integrate-and-fire model. An attractive feature of the method is that it can be used in spike-triggered mode to quantify the distinct patterns of post-spike refractoriness seen in different classes of cortical neuron. The method is first illustrated using a conductance-based model and is then applied experimentally to generate reduced models of cortical layer-5 pyramidal cells and interneurons, in injected-current and injected- conductance protocols. The resulting low-dimensional neuron models—of the refractory exponential integrate-and-fire type—provide highly accurate predictions for spike-times. The method therefore provides a useful tool for the construction of tractable models and rapid experimental classification of cortical neurons

    The Impact of Muscular Strength on Cardiovascular Disease Risk Factors

    Get PDF
    The purpose of this study was to determine the associations between isokinetic leg muscular strength and cardiovascular disease (CVD) risk factor characterizations in Americans aged 50 and older. Using a publicly available dataset from the National Health and Nutrition Examination Survey (NHANES), a secondary analysis was conducted on participants (males ≥50 yrs; females ≥55 yrs; N=10,858) pooled from 1999 to 2002. CVD risk factors were determined using the American College of Sports Medicine (ACSM) cutoff values. CVD risk factor characterization was determined by creating CVD risk factor profiles (i.e., the total number of CVD risk factors an individual possesses), then separating participants into low (0-2 CVD risk factors), moderate (3-5), and high (6-8) risk groups. Muscular strength was determined by isokinetic maximal peak force (PF) of the leg extensors, both raw and normalized to body mass. Normalized, but not raw, muscular strength was shown to be significantly inversely associated with CVD risk factor characterization for both males and females (Phttps://digitalcommons.odu.edu/gradposters2022_education/1002/thumbnail.jp

    Adherent carbon film deposition by cathodic arc with implantation

    Get PDF
    A method of improving the adhesion of carbon thin films deposited using a cathodic vacuum arc by the use of implantation at energies up to 20 keV is described. A detailed analysis of carbon films deposited onto silicon in this way is carried out using complementary techniques of transmission electron microscopy and x-ray photoelectron spectroscopy (XPS) is presented. This analysis shows that an amorphous mixing layer consisting of carbon and silicon is formed between the grown pure carbon film and the crystalline silicon substrate. In the mixing layer, it is shown that some chemical bonding occurs between carbon and silicon. Damage to the underlying crystalline silicon substrate is observed and believed to be caused by interstitial implanted carbon atoms which XPS shows are not bonded to the silicon. The effectiveness of this technique is confirmed by scratch testing and by analysis with scanning electron microscopy which shows failure of the silicon substrate occurs before delamination of the carbon film

    Topological Speed Limits to Network Synchronization

    Full text link
    We study collective synchronization of pulse-coupled oscillators interacting on asymmetric random networks. We demonstrate that random matrix theory can be used to accurately predict the speed of synchronization in such networks in dependence on the dynamical and network parameters. Furthermore, we show that the speed of synchronization is limited by the network connectivity and stays finite, even if the coupling strength becomes infinite. In addition, our results indicate that synchrony is robust under structural perturbations of the network dynamics.Comment: 5 pages, 3 figure

    Noise Induced Coherence in Neural Networks

    Full text link
    We investigate numerically the dynamics of large networks of NN globally pulse-coupled integrate and fire neurons in a noise-induced synchronized state. The powerspectrum of an individual element within the network is shown to exhibit in the thermodynamic limit (NN\to \infty) a broadband peak and an additional delta-function peak that is absent from the powerspectrum of an isolated element. The powerspectrum of the mean output signal only exhibits the delta-function peak. These results are explained analytically in an exactly soluble oscillator model with global phase coupling.Comment: 4 pages ReVTeX and 3 postscript figure

    Breaking Synchrony by Heterogeneity in Complex Networks

    Full text link
    For networks of pulse-coupled oscillators with complex connectivity, we demonstrate that in the presence of coupling heterogeneity precisely timed periodic firing patterns replace the state of global synchrony that exists in homogenous networks only. With increasing disorder, these patterns persist until they reach a critical temporal extent that is of the order of the interaction delay. For stronger disorder these patterns cease to exist and only asynchronous, aperiodic states are observed. We derive self-consistency equations to predict the precise temporal structure of a pattern from the network heterogeneity. Moreover, we show how to design heterogenous coupling architectures to create an arbitrary prescribed pattern.Comment: 4 pages, 3 figure

    Dynamical response of the Hodgkin-Huxley model in the high-input regime

    Full text link
    The response of the Hodgkin-Huxley neuronal model subjected to stochastic uncorrelated spike trains originating from a large number of inhibitory and excitatory post-synaptic potentials is analyzed in detail. The model is examined in its three fundamental dynamical regimes: silence, bistability and repetitive firing. Its response is characterized in terms of statistical indicators (interspike-interval distributions and their first moments) as well as of dynamical indicators (autocorrelation functions and conditional entropies). In the silent regime, the coexistence of two different coherence resonances is revealed: one occurs at quite low noise and is related to the stimulation of subthreshold oscillations around the rest state; the second one (at intermediate noise variance) is associated with the regularization of the sequence of spikes emitted by the neuron. Bistability in the low noise limit can be interpreted in terms of jumping processes across barriers activated by stochastic fluctuations. In the repetitive firing regime a maximization of incoherence is observed at finite noise variance. Finally, the mechanisms responsible for spike triggering in the various regimes are clearly identified.Comment: 14 pages, 24 figures in eps, submitted to Physical Review

    A Markovian event-based framework for stochastic spiking neural networks

    Full text link
    In spiking neural networks, the information is conveyed by the spike times, that depend on the intrinsic dynamics of each neuron, the input they receive and on the connections between neurons. In this article we study the Markovian nature of the sequence of spike times in stochastic neural networks, and in particular the ability to deduce from a spike train the next spike time, and therefore produce a description of the network activity only based on the spike times regardless of the membrane potential process. To study this question in a rigorous manner, we introduce and study an event-based description of networks of noisy integrate-and-fire neurons, i.e. that is based on the computation of the spike times. We show that the firing times of the neurons in the networks constitute a Markov chain, whose transition probability is related to the probability distribution of the interspike interval of the neurons in the network. In the cases where the Markovian model can be developed, the transition probability is explicitly derived in such classical cases of neural networks as the linear integrate-and-fire neuron models with excitatory and inhibitory interactions, for different types of synapses, possibly featuring noisy synaptic integration, transmission delays and absolute and relative refractory period. This covers most of the cases that have been investigated in the event-based description of spiking deterministic neural networks

    Derivation of Hebb's rule

    Full text link
    On the basis of the general form for the energy needed to adapt the connection strengths of a network in which learning takes place, a local learning rule is found for the changes of the weights. This biologically realizable learning rule turns out to comply with Hebb's neuro-physiological postulate, but is not of the form of any of the learning rules proposed in the literature. It is shown that, if a finite set of the same patterns is presented over and over again to the network, the weights of the synapses converge to finite values. Furthermore, it is proved that the final values found in this biologically realizable limit are the same as those found via a mathematical approach to the problem of finding the weights of a partially connected neural network that can store a collection of patterns. The mathematical solution is obtained via a modified version of the so-called method of the pseudo-inverse, and has the inverse of a reduced correlation matrix, rather than the usual correlation matrix, as its basic ingredient. Thus, a biological network might realize the final results of the mathematician by the energetically economic rule for the adaption of the synapses found in this article.Comment: 29 pages, LaTeX, 3 figure
    corecore