929 research outputs found
Extracting non-linear integrate-and-fire models from experimental data using dynamic I–V curves
The dynamic I–V curve method was recently introduced for the efficient experimental generation of reduced neuron models. The method extracts the response properties of a neuron while it is subject to a naturalistic stimulus that mimics in vivo-like fluctuating synaptic drive. The resulting history-dependent, transmembrane current is then projected onto a one-dimensional current–voltage relation that provides the basis for a tractable non-linear integrate-and-fire model. An attractive feature of the method is that it can be used in spike-triggered mode to quantify the distinct patterns of post-spike refractoriness seen in different classes of cortical neuron. The method is first illustrated using a conductance-based model and is then applied experimentally to generate reduced models of cortical layer-5 pyramidal cells and interneurons, in injected-current and injected- conductance protocols. The resulting low-dimensional neuron models—of the refractory exponential integrate-and-fire type—provide highly accurate predictions for spike-times. The method therefore provides a useful tool for the construction of tractable models and rapid experimental classification of cortical neurons
The Impact of Muscular Strength on Cardiovascular Disease Risk Factors
The purpose of this study was to determine the associations between isokinetic leg muscular strength and cardiovascular disease (CVD) risk factor characterizations in Americans aged 50 and older. Using a publicly available dataset from the National Health and Nutrition Examination Survey (NHANES), a secondary analysis was conducted on participants (males ≥50 yrs; females ≥55 yrs; N=10,858) pooled from 1999 to 2002. CVD risk factors were determined using the American College of Sports Medicine (ACSM) cutoff values. CVD risk factor characterization was determined by creating CVD risk factor profiles (i.e., the total number of CVD risk factors an individual possesses), then separating participants into low (0-2 CVD risk factors), moderate (3-5), and high (6-8) risk groups. Muscular strength was determined by isokinetic maximal peak force (PF) of the leg extensors, both raw and normalized to body mass. Normalized, but not raw, muscular strength was shown to be significantly inversely associated with CVD risk factor characterization for both males and females (Phttps://digitalcommons.odu.edu/gradposters2022_education/1002/thumbnail.jp
Adherent carbon film deposition by cathodic arc with implantation
A method of improving the adhesion of carbon thin films deposited using a cathodic vacuum arc by the use of implantation at energies up to 20 keV is described. A detailed analysis of carbon films deposited onto silicon in this way is carried out using complementary techniques of transmission electron microscopy and x-ray photoelectron spectroscopy (XPS) is presented. This analysis shows that an amorphous mixing layer consisting of carbon and silicon is formed between the grown pure carbon film and the crystalline silicon substrate. In the mixing layer, it is shown that some chemical bonding occurs between carbon and silicon. Damage to the underlying crystalline silicon substrate is observed and believed to be caused by interstitial implanted carbon atoms which XPS shows are not bonded to the silicon. The effectiveness of this technique is confirmed by scratch testing and by analysis with scanning electron microscopy which shows failure of the silicon substrate occurs before delamination of the carbon film
Topological Speed Limits to Network Synchronization
We study collective synchronization of pulse-coupled oscillators interacting
on asymmetric random networks. We demonstrate that random matrix theory can be
used to accurately predict the speed of synchronization in such networks in
dependence on the dynamical and network parameters. Furthermore, we show that
the speed of synchronization is limited by the network connectivity and stays
finite, even if the coupling strength becomes infinite. In addition, our
results indicate that synchrony is robust under structural perturbations of the
network dynamics.Comment: 5 pages, 3 figure
Noise Induced Coherence in Neural Networks
We investigate numerically the dynamics of large networks of globally
pulse-coupled integrate and fire neurons in a noise-induced synchronized state.
The powerspectrum of an individual element within the network is shown to
exhibit in the thermodynamic limit () a broadband peak and an
additional delta-function peak that is absent from the powerspectrum of an
isolated element. The powerspectrum of the mean output signal only exhibits the
delta-function peak. These results are explained analytically in an exactly
soluble oscillator model with global phase coupling.Comment: 4 pages ReVTeX and 3 postscript figure
Breaking Synchrony by Heterogeneity in Complex Networks
For networks of pulse-coupled oscillators with complex connectivity, we
demonstrate that in the presence of coupling heterogeneity precisely timed
periodic firing patterns replace the state of global synchrony that exists in
homogenous networks only. With increasing disorder, these patterns persist
until they reach a critical temporal extent that is of the order of the
interaction delay. For stronger disorder these patterns cease to exist and only
asynchronous, aperiodic states are observed. We derive self-consistency
equations to predict the precise temporal structure of a pattern from the
network heterogeneity. Moreover, we show how to design heterogenous coupling
architectures to create an arbitrary prescribed pattern.Comment: 4 pages, 3 figure
Dynamical response of the Hodgkin-Huxley model in the high-input regime
The response of the Hodgkin-Huxley neuronal model subjected to stochastic
uncorrelated spike trains originating from a large number of inhibitory and
excitatory post-synaptic potentials is analyzed in detail. The model is
examined in its three fundamental dynamical regimes: silence, bistability and
repetitive firing. Its response is characterized in terms of statistical
indicators (interspike-interval distributions and their first moments) as well
as of dynamical indicators (autocorrelation functions and conditional
entropies). In the silent regime, the coexistence of two different coherence
resonances is revealed: one occurs at quite low noise and is related to the
stimulation of subthreshold oscillations around the rest state; the second one
(at intermediate noise variance) is associated with the regularization of the
sequence of spikes emitted by the neuron. Bistability in the low noise limit
can be interpreted in terms of jumping processes across barriers activated by
stochastic fluctuations. In the repetitive firing regime a maximization of
incoherence is observed at finite noise variance. Finally, the mechanisms
responsible for spike triggering in the various regimes are clearly identified.Comment: 14 pages, 24 figures in eps, submitted to Physical Review
A Markovian event-based framework for stochastic spiking neural networks
In spiking neural networks, the information is conveyed by the spike times,
that depend on the intrinsic dynamics of each neuron, the input they receive
and on the connections between neurons. In this article we study the Markovian
nature of the sequence of spike times in stochastic neural networks, and in
particular the ability to deduce from a spike train the next spike time, and
therefore produce a description of the network activity only based on the spike
times regardless of the membrane potential process.
To study this question in a rigorous manner, we introduce and study an
event-based description of networks of noisy integrate-and-fire neurons, i.e.
that is based on the computation of the spike times. We show that the firing
times of the neurons in the networks constitute a Markov chain, whose
transition probability is related to the probability distribution of the
interspike interval of the neurons in the network. In the cases where the
Markovian model can be developed, the transition probability is explicitly
derived in such classical cases of neural networks as the linear
integrate-and-fire neuron models with excitatory and inhibitory interactions,
for different types of synapses, possibly featuring noisy synaptic integration,
transmission delays and absolute and relative refractory period. This covers
most of the cases that have been investigated in the event-based description of
spiking deterministic neural networks
Derivation of Hebb's rule
On the basis of the general form for the energy needed to adapt the
connection strengths of a network in which learning takes place, a local
learning rule is found for the changes of the weights. This biologically
realizable learning rule turns out to comply with Hebb's neuro-physiological
postulate, but is not of the form of any of the learning rules proposed in the
literature.
It is shown that, if a finite set of the same patterns is presented over and
over again to the network, the weights of the synapses converge to finite
values.
Furthermore, it is proved that the final values found in this biologically
realizable limit are the same as those found via a mathematical approach to the
problem of finding the weights of a partially connected neural network that can
store a collection of patterns. The mathematical solution is obtained via a
modified version of the so-called method of the pseudo-inverse, and has the
inverse of a reduced correlation matrix, rather than the usual correlation
matrix, as its basic ingredient. Thus, a biological network might realize the
final results of the mathematician by the energetically economic rule for the
adaption of the synapses found in this article.Comment: 29 pages, LaTeX, 3 figure
- …