604 research outputs found
Radiative cascades in charged quantum dots
We measured, for the first time, two photon radiative cascades due to
sequential recombination of quantum dot confined electron hole pairs in the
presence of an additional spectator charge carrier. We identified direct, all
optical cascades involving spin blockaded intermediate states, and indirect
cascades, in which non radiative relaxation precedes the second recombination.
Our measurements provide also spin dephasing rates of confined carriers.Comment: 4 pages, 3 figure
Polarization memory in single Quantum Dots
We measured the polarization memory of excitonic and biexcitonic optical
transitions from single quantum dots at either positive, negative or neutral
charge states. Positive, negative and no circular or linear polarization memory
was observed for various spectral lines, under the same quasi-resonant
excitation below the wetting layer band-gap. We developed a model which
explains both qualitatively and quantitatively the experimentally measured
polarization spectrum for all these optical transitions. We consider quite
generally the loss of spin orientation of the photogenerated electron-hole pair
during their relaxation towards the many-carrier ground states. Our analysis
unambiguously demonstrates that while electrons maintain their initial spin
polarization to a large degree, holes completely dephase.Comment: 6 pages, 4 figure
Semiconductor quantum dot - a quantum light source of multicolor photons with tunable statistics
We investigate the intensity correlation properties of single photons emitted
from an optically excited single semiconductor quantum dot. The second order
temporal coherence function of the photons emitted at various wavelengths is
measured as a function of the excitation power. We show experimentally and
theoretically, for the first time, that a quantum dot is not only a source of
correlated non-classical monochromatic photons but is also a source of
correlated non-classical \emph{multicolor} photons with tunable correlation
properties. We found that the emitted photon statistics can be varied by the
excitation rate from a sub-Poissonian one, where the photons are temporally
antibunched, to super-Poissonian, where they are temporally bunched.Comment: 4 pages, 2 figure
Complete control of a matter qubit using a single picosecond laser pulse
We demonstrate for the first time that a matter physical two level system, a
qubit, can be fully controlled using one ultrafast step. We show that the spin
state of an optically excited electron, an exciton, confined in a quantum dot,
can be rotated by any desired angle, about any desired axis, during such a
step. For this we use a single, resonantly tuned, picosecond long, polarized
optical pulse. The polarization of the pulse defines the rotation axis, while
the pulse detuning from a non-degenerate absorption resonance, defines the
magnitude of the rotation angle. We thereby achieve a high fidelity, universal
gate operation, applicable to other spin systems, using only one short optical
pulse. The operation duration equals the pulse temporal width, orders of
magnitude shorter than the qubit evolution life and coherence times.Comment: main text: 4 pages, 3 figures Supplemental material: 3 pages, 1
figur
- …