4 research outputs found

    Genes and Pathways Associated with Skeletal Sagittal Malocclusions: A Systematic Review

    Get PDF
    Skeletal class II and III malocclusions are craniofacial disorders that negatively impact people’s quality of life worldwide. Unfortunately, the growth patterns of skeletal malocclusions and their clinical correction prognoses are difficult to predict largely due to lack of knowledge of their precise etiology. Inspired by the strong inheritance pattern of a specific type of skeletal malocclusion, previous genome-wide association studies (GWAS) were reanalyzed, resulting in the identification of 19 skeletal class II malocclusion-associated and 53 skeletal class III malocclusion-associated genes. Functional enrichment of these genes created a signal pathway atlas in which most of the genes were associated with bone and cartilage growth and development, as expected, while some were characterized by functions related to skeletal muscle maturation and construction. Interestingly, several genes and enriched pathways are involved in both skeletal class II and III malocclusions, indicating the key regulatory effects of these genes and pathways in craniofacial development. There is no doubt that further investigation is necessary to validate these recognized genes’ and pathways’ specific function(s) related to maxillary and mandibular development. In summary, this systematic review provides initial insight on developing novel gene-based treatment strategies for skeletal malocclusions and paves the path for precision medicine where dental care providers can make an accurate prediction of the craniofacial growth of an individual patient based on his/her genetic profile. © 2021 by the authors. Licensee MDPI, Basel, Switzerland

    Characterizing the microbiota of cleft lip and palate patients: a comprehensive review

    Get PDF
    Orofacial cleft disorders, including cleft lip and/or palate (CL/P), are one of the most frequently-occurring congenital disorders worldwide. The health issues of patients with CL/P encompass far more than just their anatomic anomaly, as patients with CL/P are prone to having a high incidence of infectious diseases. While it has been previously established that the oral microbiome of patients with CL/P differs from that of unaffected patients, the exact nature of this variance, including the relevant bacterial species, has not been fully elucidated; likewise, examination of anatomic locations besides the cleft site has been neglected. Here, we intended to provide a comprehensive review to highlight the significant microbiota differences between CL/P patients and healthy subjects in various anatomic locations, including the teeth inside and adjacent to the cleft, oral cavity, nasal cavity, pharynx, and ear, as well as bodily fluids, secretions, and excretions. A number of bacterial and fungal species that have been proven to be pathogenic were found to be prevalently and/or specifically detected in CL/P patients, which can benefit the development of CL/P-specific microbiota management strategies

    Robust estimation of bacterial cell count from optical density

    Get PDF
    Optical density (OD) is widely used to estimate the density of cells in liquid culture, but cannot be compared between instruments without a standardized calibration protocol and is challenging to relate to actual cell count. We address this with an interlaboratory study comparing three simple, low-cost, and highly accessible OD calibration protocols across 244 laboratories, applied to eight strains of constitutive GFP-expressing E. coli. Based on our results, we recommend calibrating OD to estimated cell count using serial dilution of silica microspheres, which produces highly precise calibration (95.5% of residuals <1.2-fold), is easily assessed for quality control, also assesses instrument effective linear range, and can be combined with fluorescence calibration to obtain units of Molecules of Equivalent Fluorescein (MEFL) per cell, allowing direct comparison and data fusion with flow cytometry measurements: in our study, fluorescence per cell measurements showed only a 1.07-fold mean difference between plate reader and flow cytometry data

    Reproducibility of fluorescent expression from engineered biological constructs in E. coli

    No full text
    We present results of the first large-scale interlaboratory study carried out in synthetic biology, as part of the 2014 and 2015 International Genetically Engineered Machine (iGEM) competitions. Participants at 88 institutions around the world measured fluorescence from three engineered constitutive constructs in E. coli. Few participants were able to measure absolute fluorescence, so data was analyzed in terms of ratios. Precision was strongly related to fluorescent strength, ranging from 1.54-fold standard deviation for the ratio between strong promoters to 5.75-fold for the ratio between the strongest and weakest promoter, and while host strain did not affect expression ratios, choice of instrument did. This result shows that high quantitative precision and reproducibility of results is possible, while at the same time indicating areas needing improved laboratory practices.Peer reviewe
    corecore