2,456 research outputs found

    Precision quantum metrology and nonclassicality in linear and nonlinear detection schemes

    Get PDF
    We examine whether metrological resolution beyond coherent states is a nonclassical effect. We show that this is true for linear detection schemes but false for nonlinear schemes, and propose a very simple experimental setup to test it. We find a nonclassicality criterion derived from quantum Fisher information.Comment: 4 pages, 1 figur

    Dynamics of Atom-Field Entanglement from Exact Solutions: Towards Strong Coupling and Non-Markovian Regimes

    Full text link
    We examine the dynamics of bipartite entanglement between a two-level atom and the electromagnetic field. We treat the Jaynes-Cummings model with a single field mode and examine in detail the exact time evolution of entanglement, including cases where the atomic state is initially mixed and the atomic transition is detuned from resonance. We then explore the effects of other nearby modes by calculating the exact time evolution of entanglement in more complex systems with two, three, and five field modes. For these cases we can obtain exact solutions which include the strong coupling regimes. Finally, we consider the entanglement of a two-level atom with the infinite collection of modes present in the intracavity field of a Fabre-Perot cavity. In contrast to the usual treatment of atom-field interactions with a continuum of modes using the Born-Markov approximation, our treatment in all cases describes the full non-Markovian dynamics of the atomic subsystem. Only when an analytic expression for the infinite mode case is desired do we need to make a weak coupling assumption which at long times approximates Markovian dynamics.Comment: 12 pages, 5 figures; minor changes in grammar, wording, and formatting. One unnecessary figure removed. Figure number revised (no longer counts subfigures separately

    Independent nonclassical tests for states and measurements in the same experiment

    Get PDF
    We show that one single experiment can test simultaneously and independently both the nonclassicality of states and measurements by the violation or fulfillment of classical bounds on the statistics. Nonideal measurements affected by imperfections can be characterized by two bounds depending on whether we test the ideal measurement or the real one.Comment: 9 pages, 3 figures. Proceedings of 17th CEWQO 201

    Laser-modified one- and two-photon absorption:Expanding the scope of optical nonlinearity

    Get PDF
    It is shown that conventional one-photon and two-photon absorption processes can be made subject to nonlinear optical control, in each case significantly modifying the efficiency of absorption, through the effect of a secondary, off-resonant stimulus laser beam. The mechanistic origin of these laser-modified absorption processes, in which the stimulus beam emerges unchanged, is traced to higher-order terms in standard perturbation treatments. These normally insignificant terms become unusually prominent when the secondary optical stimulus is moderately intense. Employing a quantum formulation, the effects of the stimulus beam on one-photon and two-photon absorption are analyzed, and calculations are performed to determine the degree of absorption enhancement, and the form of spectral manifestation, under various laser intensities. The implications of differences in selection rules are also considered and exemplified, leading to the identification of dark states that can be populated as a result of laser-modified absorption. Attention is also drawn to the possibility of quantum nondemolition measurements, based on such a form of optical nonlinearity

    Quantum limit of deterministic theories

    Get PDF
    We show that the quantum linear harmonic oscillator can be obtained in the large NN limit of a classical deterministic system with SU(1,1) dynamical symmetry. This is done in analogy with recent work by G.'t Hooft who investigated a deterministic system based on SU(2). Among the advantages of our model based on a non--compact group is the fact that the ground state energy is uniquely fixed by the choice of the representation.Comment: 4 pages, 2 figures, minor corrections added. To appear in the Proceedings of Waseda International Symposium on Fundamental Physics: "New Perspectives in Quantum Physics", 12-15 November 2002, Waseda University, Tokyo, Japa

    An efficient scheme for the deterministic maximal entanglement of N trapped ions

    Get PDF
    We propose a method for generating maximally entangled states of N two-level trapped ions. The method is deterministic and independent of the number of ions in the trap. It involves a controlled-NOT acting simultaneously on all the ions through a dispersive interaction. We explore the potential application of our scheme for high precision frequency standards.Comment: 4 pages, no figures, submitted to PRL, under review, Revised Version: Incorporated referee comment

    Dynamic interference of photoelectrons produced by high-frequency laser pulses

    Full text link
    The ionization of an atom by a high-frequency intense laser pulse, where the energy of a single-photon is sufficient to ionize the system, is investigated from first principles. It is shown that as a consequence of an AC Stark effect in the continuum, the energy of the photoelectron follows the envelope of the laser pulse. This is demonstrated to result in strong dynamic interference of the photoelectrons of the same kinetic energy emitted at different times. Numerically exact computations on the hydrogen atom demonstrate that the dynamic interference spectacularly modifies the photoionization process and is prominently manifested in the photoelectron spectrum by the appearance of a distinct multi-peak pattern. The general theory is shown to be well approximated by explicit analytical expressions which allow for a transparent understanding of the discovered phenomena and for making predictions on the dependence of the measured spectrum on the properties of the pulse.Comment: 5 figure

    Dynamics of entropy and nonclassical properties of the state of a Λ\Lambda-type three-level atom interacting with a single-mode cavity field with intensity-dependent coupling in a Kerr medium

    Full text link
    In this paper, we study the interaction between a three-level atom and a quantized single-mode field with ` `intensity-dependent coupling"" in a ` `Kerr medium"". The three-level atom is considered to be in a Λ\Lambda-type configuration. Under particular initial conditions, which may be prepared for the atom and the field, the dynamical state vector of the entire system will be explicitly obtained, for arbitrary nonlinearity function f(n)f(n) associated to any physical system. Then, after evaluating the variation of the field entropy against time, we will investigate the quantum statistics as well as some of the nonclassical properties of the introduced state. During our calculations we investigate the effects of intensity-dependent coupling, Kerr medium and detuning parameters on the depth and domain of the nonclassicality features of the atom-field state vector. Finally, we compare our obtained results with those of VV-type three-level atoms.Comment: 18 pages, 7 Figure

    Entanglement of bosonic modes of nonplanar molecules

    Full text link
    Entanglement of bosonic modes of material oscillators is studied in the context of two bilinearly coupled, nonlinear oscillators. These oscillators are realizable in the vibrational-cum-bending motions of C-H bonds in dihalomethanes. The bilinear coupling gives rise to invariant subspaces in the Hilbert space of the two oscillators. The number of separable states in any invariant subspace is one more than the dimension of the space. The dynamics of the oscillators when the initial state belongs to an invariant subspace is studied. In particular, the dynamics of the system when the initial state is such that the total energy is concentrated in one of the modes is studied and compared with the evolution of the system when the initial state is such wherein the modes share the total energy. The dynamics of quantities such as entropy, mean of number of quanta in the two modes and variances in the quadratures of the two modes are studied. Possibility of generating maximally entangled states is indicated.Comment: 21 pages, 6 figure
    corecore