3 research outputs found

    Molecular Mechanisms of Antibiotic Resistance in Helicobacter pylori

    Get PDF
    An estimated 4 to 5 million individuals in the Netherlands are actively infected with Helicobacter pylori. Eradication of this bacterium becomes more difficult as the prevalence of antibiotic resistance is increasing worldwide. Most H. pylori infections are now diagnosed by non-invasive testing (i.e. urea breath test, serology, stool test), and thus data on antibiotic susceptibility are lacking. Furthermore, once the antibiotic susceptibility is assessed using conventional culture-based methods by means of an E-test, agar dilution or disc-diffusion, then data are difficult to compare between different centers due to lack of standardization. Molecular-based methods are reproducible and easily standardized, and thus they can offer an attractive alternative. To develop molecular-based methods knowledge of molecular mechanisms underlying antibiotic resistance is mandatory. The research presented in this thesis aims to obtain information on molecular mechanisms of antibiotic resistance in H. pylori

    Role of the rdxA and frxA genes in oxygen-dependent metronidazole resistance of Helicobacter pylori

    Get PDF
    Almost 50 % of all Helicobacter pylori isolates are resistant to metronidazole, which reduces the efficacy of metronidazole-containing regimens, but does not make them completely ineffective. This discrepancy between in vitro metronidazole resistance and treatment outcome may partially be explained by changes in oxygen pressure in the gastric environment, as metronidazole-resistant (MtzR) H. pylori isolates become metronidazole-susceptible (MtzS) under low oxygen conditions in vitro. In H. pylori the rdxA and frxA genes encode reductases which are required for the activation of metronidazole, and inactivation of these genes results in metronidazole resistance. Here the role of inactivating mutations in these genes on the reversibility of metronidazole resistance under low oxygen conditions is established. Clinical H. pylori isolates containing mutations resulting in a truncated RdxA and/or FrxA protein were selected and incubated under anaerobic conditions, and the effect of these conditions on the MICs of metronidazole, amoxycillin, clarithromycin and tetracycline, and cell viability were determined. While anaerobiosis had no effect on amoxycillin, clarithromycin and tetracycline resistance, all isolates lost their metronidazole resistance when cultured under anaerobic conditions. This loss of metronidazole resistance also occurred in the presence of the protein synthesis inhibitor chloramphenicol. Thus, factor(s) that activate metronidazole under low oxygen tension are not specifically induced by low oxygen conditions, but are already present under microaerophilic conditions. As there were no significant differences in cell viability between the clinical isolates, it is likely that neither the rdxA nor the frxA gene participates in the reversibility of metronidazole resistance
    corecore