5 research outputs found

    Structural and electrochemical characterisation of the catalytic centres in noble metal free catalysts for the oxygen reduction

    Full text link
    Vorspann Titelseite a Zusammenfassung (deutsch) c Abstract (englisch) e Inhaltsverzeichnis i Abbildungsverzeichnis iv Tabellenverzeichnis vii Symbolverzeichnis ix Kapitel 1: Einleitung 1 Motivation 1 Pionierarbeiten zu pyrolysierten Übergangsmetall-Chelaten 6 Zielsetzung der Arbeit 7 Kapitel 2: Theoretische Grundlagen 11 Grundlagen der Elektrochemie 11 Röntgenabsorptionsspektroskopie (XAFS) 18 MĂ¶ĂŸbauer-Spektroskopie 25 ESR Spektroskopie 32 Kapitel 3: PrĂ€paration und Analytik 34 KatalysatorprĂ€paration durch Pyrolyse von Chelaten 34 Analytische Techniken 36 Kapitel 4: Strukturelle Untersuchungen 54 Modelle des katalytischen Zentrums 54 Auswertung der EXAFS-Messungen 62 XAFS In-Situ Messungen an den K-Kanten von Eisen und Cobalt 128 Auswertung der XES-Messungen 137 Auswertung der XANES-Messungen 140 Untersuchungen zur elektronischen Umgebung des katalytischen Zentrums 154 Kapitel 5: Thermographie-Untersuchungen 169 Thermographie-Messungen zur kombinatorischen Materialsynthese 169 Diskussion der Infrarotmessungen 178 Zusammenfassung 179 Kapitel 6: Schlussfolgerungen und Ausblick 181 Literaturverzeichnis 189In der vorliegenden Arbeit werden Ergebnisse von Untersuchungen zur Struktur des katalytischen Zentrums und der elektrochemischen AktivitĂ€t von Elektrokatalysatoren fĂŒr die Sauerstoffreduktion im sauren Medium prĂ€sentiert. Die Katalysatoren werden durch gezielte thermische Behandlung von Übergangsmetall-Makrozyklen (Eisen- bzw. Cobalt-Porphyrinen) hergestellt. Diese Materialien könnten technische Bedeutung als Elektrokatalysatoren in Polymerelektrolytmembran-Brennstoffzellen im Rahmen einer effizienten und umweltschonenden Energiewandlung erlangen. Den Schwerpunkt der Arbeit bilden Katalysatoren, deren PrĂ€paration ein neuartiger Ansatz zugrunde liegt, der zu einer erhöhten katalytischen AktivitĂ€t im Vergleich zu bisherigen Verfahren fĂŒhrt. Die Resultate der strukturaufklĂ€renden Messungen werden daher mit den Arbeiten anderer Autoren an vergleichbar prĂ€parierten Katalysatoren verglichen. Wesentliche Erkenntnisse ĂŒber die Struktur der katalytischen Zentren werden aus Extended X-ray Absorption Fine Structure EXAFS-, X-ray Absorption Near Edge Spectroscopy (XANES)-, als auch aus in-situ XAFS-Untersuchungen sowie MĂ¶ĂŸbauer- und Elektronenresonanz-Spektroskopie (ESR) gewonnen. Die Ergebnisse werden durch elektrochemische Messungen, Röntgendiffraktometrie, Rasterelektronen- und Transmissionselektronenmikroskopie sowie Gassorptionsuntersuchungen ergĂ€nzt. Die Untersuchungen zeigen, dass unter bestimmten PrĂ€parationsbedingungen katalytisch inaktive metallhaltige Phasen in hohen Konzentrationen vorliegen und deshalb keine Identifizierung der katalytischen Zentren zulassen. Eine besondere Herausforderung in der StrukturaufklĂ€rung besteht daher in der Notwendigkeit, aktive und nichtaktive Spezies zu unterscheiden. Es wird gezeigt werden, dass sich durch geeignete Nachbehandlung der Katalysatoren katalytisch inaktive Phasen entfernen lassen. Als wesentliches Merkmal fĂŒr die beobachtete katalytische AktivitĂ€t konnte die Koordination der Atome Eisen und Cobalt durch Stickstoff belegt werden, was auf einen Erhalt stickstoffkoordinierter Metallkerne (Me-N4-Einheiten) aus den vorgelegten Porphyrinkomplexen hindeutet. Weiterhin zeigen die durchgefĂŒhrten Arbeiten an Co/Fe-Katalysatoren, dass Metalle aus Oxalaten, die wĂ€hrend der Pyrolyse ein AufschĂ€umen der durch Polymerisation entstehenden Kohlenstoffmatrix bewirken, möglicherweise am Ende des Pyrolyseprozesses ebenfalls in stickstoffkoordinierten Zentren prĂ€sent sind. Die durchgefĂŒhrten Messungen tragen ebenfalls zur AufklĂ€rung der Unterschiede in der katalytischen AktivitĂ€t bei, die durch Variationen im PrĂ€parationsprozess entstehen. Dabei zeigt sich u.a. dass die Zugabe von Schwefel wĂ€hrend des Pyrolyseprozesses nicht - wie ursprĂŒnglich angenommen - eine Modifizierung des katalytischen Zentrums bewirkt, sondern die dabei beobachtete Steigerung der AktivitĂ€t auf morphologische Effekte zurĂŒckzufĂŒhren ist. Es kann eindeutig nachgewiesen werden, dass sich die untersuchten Katalysatoren durch katalytische Zentren mit molekularer Struktur auszeichnen. Damit unterscheiden sie sich in ihrem Aufbau grundlegend von solchen Katalysatoren, bei denen katalytisch aktive Metallteilchen auf einem hochporösen KohlenstofftrĂ€ger abgesetzt sind (z.B. getrĂ€gertes Platin). Die Zentren sind integriert in eine leitende graphitartige Kohlenstoffmatrix mit hoher PorositĂ€t, die sich wĂ€hrend der Pyrolyse aus den ChelatmolekĂŒlen bildet. Die Untersuchungen ergeben weiterhin, dass sich die elektronische Umgebung der katalytisch aktiven Metallatome wesentlich von der in den Porphyrin- Precursoren unterscheidet. Es ist anzunehmen, dass hierauf die erhöhte katalytische AktivitĂ€t und StabilitĂ€t der Katalysatoren gegenĂŒber den VorlĂ€ufersubstanzen zurĂŒckzufĂŒhren ist. In Übereinstimmung mit einer verĂ€nderten elektronischen Umgebung ist die Feststellung, dass die lokale Struktur der das Zentrum umgebenden Kohlenstoffmatrix eine hohe UnregelmĂ€ĂŸigkeit aufweist. Die experimentellen Ergebnisse werden kritisch im Hinblick auf die Frage ĂŒberprĂŒft, ob die Zentren einen 2- oder 4 -Elektronentransfer-Mechanismus katalysieren.This thesis presents the results of investigations performed to analyse the structure and electrochemical activity of the catalytic centres of electrocatalysts for oxygen reduction in acidic media. The catalysts have been prepared by pyrolysis of transition-metal macrocycles (iron and cobalt- porphyrins). This type of material could gain technological significance as electrocatalyst in polymer-electrolyte membrane fuel cells which are developed with regard to a future efficient and environmentally sustainable energy supply. The investigations concentrate on catalysts that are prepared by a novel preparation procedure which leads to a higher catalytic activity than other approaches. Therefore, own structure determining measurements will be compared with work done by other authors reporting on the properties of heat-treated transition metal complexes. Conclusions about the structure of the catalytic centres have been obtained by Extended X-ray Absorption Fine Structure- (EXAFS), X-ray Absorption Near Edge Spectroscopy- (XANES) and in-situ XAFS-measurements as well as Mössbauer- and Electron Spin Resonance- (ESR) spectroscopy. These results are complemented by electrochemical measurements, X-ray diffractometry, scanning electron and transmission electron microscopy as well as gas sorption measurements. The investigations showed that under certain preparation conditions catalytically inactive metal-containing phases are present in the catalysts making the identification of the catalytic centres difficult or even impossible. It was a particular challenge to distinguish between active and inactive phases. However, it will be shown that these phases can be removed by an appropriate after-treatment. It has been proven that the catalytic centres are characterised by the coordination of metal atoms of iron and cobalt by nitrogen. This indicates a conservation of the nitrogen-coordinated metal cores (MeN4-units) of the original chelate complexes of the porphyrins during the process of pyrolysis. Moreover, from the measurements of Co/Fe-catalysts it was concluded that also metal atoms that originate from oxalate molecules which had been added as foaming agents might be present in similar nitrogen-coordinated centres after pyrolysis. The measurements performed also clarify the differences in catalytic activity that have been observed varying the preparation process. In this context, it will be shown that the addition of sulfur does not result in a modified catalytic centre as hypothesised initially. The enhanced catalytic activity can rather be attributed to morphological effects. Unequivocally, it can be shown that the investigated catalysts are characterised by catalytic centres of molecular structure. Hence, their constitution is fundamentally different from catalysts where catalytically active metal particles are deposited on a porous carbon support (e.g. carbon supported platinum). In our case, the centres are embedded in a conductive graphite-like carbon matrix of high porosity that is formed during pyrolysis of the chelate molecules. Further, the investigations give evidence that the electronic structure of the catalytically active metal atoms differs significantly from that in the porphyrin precursors. It is assumed that this difference is responsible for the increased catalytic activity and chemical stability compared to the precursor materials. The changed electronic environment is in agreement with the observation of high disorder in the local carbon matrix. The experimental results are reviewed with regard to the question whether the centres catalyse via a 2- of 4-electron transfer mechanism

    Alternative Antriebe in der Luftfahrt

    Full text link
    Brennstoffzellentechnologie in der Luftfahrt: PEM-Systeme als APU-Ersatz, fĂŒr emissionsfreies Ground-Taxiing und als Antrieb fĂŒr Ultraleichtflugzeug

    Improving the environmental impact of civil aircraft by fuel cell technology: concepts and technological progress

    Full text link
    Nowadays, new technologies and breakthroughs in the fields of energy efficiency, alternative fuels and added-value electronics are leading to improved, more environmentally sustainable and green thinking applications. Due to the forecasted rapid increase of volume of air traffic, future aircraft generations have to face enhanced requirements concerning productivity, environmental compatibility and higher operational availability, thus effecting technical, operational and economical aspects of in-flight and on-ground power generation systems, even if air transport is responsible for only about 2% of all anthropogenic CO2 emissions. The trend in new aircraft development is toward ‘‘more electric’’ architectures which is characterized by a higher proportion of electrical systems substituting hydraulically or pneumatically driven components, and, as a result, increasing the amount of electrical power. Fuel cell systems in this context represent a promising solution regarding the enhancement of the energy efficiency for both cruise and ground operations. For several years the Institute of Technical Thermodynamics of the German Aerospace Center (Deutsches Zentrum f€ur Luft- und Raumfahrt, DLR) in Stuttgart and Hamburg has developed fuel cell systems for aircraft applications. The activities of DLR focus on: identification of fuel cell applications in aircraft in which the properties of fuel cell systems, namely high electric efficiency, low emissions and silent operation, are capitalized for the aircraft application; design and modeling of possible and advantageous system designs; theoretical and experimental investigations regarding specific aircraft relevant operating conditions; qualification of airworthy fuel cell systems; set up and full scale testing of fuel cell systems for application in research aircraft. In cooperation with Airbus, several fuel cell applications within the aircraft for both ground and cruise operation have been identified. As a consequence, fuel cell systems capable of supporting or even replacing existing systems have been derived. In this context, the provision of inert gas for the jet fuel (kerosene) tank and electrical cabin power supply, including water regeneration, represent the most promising application fields. This paper will present the state of development and the evolution discussing the following points: modeling of different system architectures and evaluation of promising fuel cell systems; experimental evaluation of fuel cell systems under relevant conditions (low pressure, vibrations, reformate operation, etc.); fuel cell test in DLR’s research aircraft ATRA (A320) including the test of an emergency system based on hydrogen and oxygen with 20 kW of electrical power. The fuel cell system was integrated into an A320 aircraft and tested up to a flight altitude of 25 000 feet under several acceleration and inclination conditions; fuel cell tests in Antares-H2—DLR’s new flying test bed

    Fuel Cell Systems for a Greener Aviation

    Full text link
    The trend in new civil aircraft’s development is toward “more electric” aircraft and green sky. Fuel cell systems as possible part of the electrical supply in civil aircraft can allow reaching this target. Indeed fuel cell systems have high electrical efficiency, which can be used for on ground power generation and emergency power on flight, and are only producing water and oxygen depleted air as gas emissions. What it is also very innovative is that this “waste products” can be used to generate water on board and inert gas for the jet fuel tank as fire retardation and suppression measure. For several years the Institute of Technical Thermodynamics of the German Aerospace Centre (Deutsches Zentrum fĂŒr Luft- und Raumfahrt; DLR) in cooperation with Airbus developed fuel cell systems which fulfil these functionalities for both aircraft ground and cruise operation. The main achievements of the last past years are the Antares-H2 development and tests as well as the successful milestones passed with the research aircraft DLR ATRA with fuel cell system test. This paper presents all the modelling and experimental activities of the DLR on fuel cell development for aircraft
    corecore