5 research outputs found
Structural and electrochemical characterisation of the catalytic centres in noble metal free catalysts for the oxygen reduction
Vorspann
Titelseite a
Zusammenfassung (deutsch) c
Abstract (englisch) e
Inhaltsverzeichnis i
Abbildungsverzeichnis iv
Tabellenverzeichnis vii
Symbolverzeichnis ix
Kapitel 1: Einleitung 1
Motivation 1
Pionierarbeiten zu pyrolysierten Ăbergangsmetall-Chelaten 6
Zielsetzung der Arbeit 7
Kapitel 2: Theoretische Grundlagen 11
Grundlagen der Elektrochemie 11
Röntgenabsorptionsspektroskopie (XAFS) 18
MöĂbauer-Spektroskopie 25
ESR Spektroskopie 32
Kapitel 3: PrÀparation und Analytik 34
KatalysatorprÀparation durch Pyrolyse von Chelaten 34
Analytische Techniken 36
Kapitel 4: Strukturelle Untersuchungen 54
Modelle des katalytischen Zentrums 54
Auswertung der EXAFS-Messungen 62
XAFS In-Situ Messungen an den K-Kanten von Eisen und Cobalt 128
Auswertung der XES-Messungen 137
Auswertung der XANES-Messungen 140
Untersuchungen zur elektronischen Umgebung des katalytischen Zentrums 154
Kapitel 5: Thermographie-Untersuchungen 169
Thermographie-Messungen zur kombinatorischen Materialsynthese 169
Diskussion der Infrarotmessungen 178
Zusammenfassung 179
Kapitel 6: Schlussfolgerungen und Ausblick 181
Literaturverzeichnis 189In der vorliegenden Arbeit werden Ergebnisse von Untersuchungen zur Struktur
des katalytischen Zentrums und der elektrochemischen AktivitÀt von
Elektrokatalysatoren fĂŒr die Sauerstoffreduktion im sauren Medium prĂ€sentiert.
Die Katalysatoren werden durch gezielte thermische Behandlung von
Ăbergangsmetall-Makrozyklen (Eisen- bzw. Cobalt-Porphyrinen) hergestellt.
Diese Materialien könnten technische Bedeutung als Elektrokatalysatoren in
Polymerelektrolytmembran-Brennstoffzellen im Rahmen einer effizienten und
umweltschonenden Energiewandlung erlangen.
Den Schwerpunkt der Arbeit bilden Katalysatoren, deren PrÀparation ein
neuartiger Ansatz zugrunde liegt, der zu einer erhöhten katalytischen
AktivitĂ€t im Vergleich zu bisherigen Verfahren fĂŒhrt. Die Resultate der
strukturaufklÀrenden Messungen werden daher mit den Arbeiten anderer Autoren
an vergleichbar prÀparierten Katalysatoren verglichen.
Wesentliche Erkenntnisse ĂŒber die Struktur der katalytischen Zentren werden
aus Extended X-ray Absorption Fine Structure EXAFS-, X-ray Absorption Near
Edge Spectroscopy (XANES)-, als auch aus in-situ XAFS-Untersuchungen sowie
MöĂbauer- und Elektronenresonanz-Spektroskopie (ESR) gewonnen. Die Ergebnisse
werden durch elektrochemische Messungen, Röntgendiffraktometrie,
Rasterelektronen- und Transmissionselektronenmikroskopie sowie
Gassorptionsuntersuchungen ergÀnzt.
Die Untersuchungen zeigen, dass unter bestimmten PrÀparationsbedingungen
katalytisch inaktive metallhaltige Phasen in hohen Konzentrationen vorliegen
und deshalb keine Identifizierung der katalytischen Zentren zulassen. Eine
besondere Herausforderung in der StrukturaufklÀrung besteht daher in der
Notwendigkeit, aktive und nichtaktive Spezies zu unterscheiden. Es wird
gezeigt werden, dass sich durch geeignete Nachbehandlung der Katalysatoren
katalytisch inaktive Phasen entfernen lassen.
Als wesentliches Merkmal fĂŒr die beobachtete katalytische AktivitĂ€t konnte die
Koordination der Atome Eisen und Cobalt durch Stickstoff belegt werden, was
auf einen Erhalt stickstoffkoordinierter Metallkerne (Me-N4-Einheiten) aus den
vorgelegten Porphyrinkomplexen hindeutet. Weiterhin zeigen die durchgefĂŒhrten
Arbeiten an Co/Fe-Katalysatoren, dass Metalle aus Oxalaten, die wÀhrend der
Pyrolyse ein AufschÀumen der durch Polymerisation entstehenden
Kohlenstoffmatrix bewirken, möglicherweise am Ende des Pyrolyseprozesses
ebenfalls in stickstoffkoordinierten Zentren prĂ€sent sind. Die durchgefĂŒhrten
Messungen tragen ebenfalls zur AufklÀrung der Unterschiede in der
katalytischen AktivitÀt bei, die durch Variationen im PrÀparationsprozess
entstehen. Dabei zeigt sich u.a. dass die Zugabe von Schwefel wÀhrend des
Pyrolyseprozesses nicht - wie ursprĂŒnglich angenommen - eine Modifizierung des
katalytischen Zentrums bewirkt, sondern die dabei beobachtete Steigerung der
AktivitĂ€t auf morphologische Effekte zurĂŒckzufĂŒhren ist. Es kann eindeutig
nachgewiesen werden, dass sich die untersuchten Katalysatoren durch
katalytische Zentren mit molekularer Struktur auszeichnen. Damit unterscheiden
sie sich in ihrem Aufbau grundlegend von solchen Katalysatoren, bei denen
katalytisch aktive Metallteilchen auf einem hochporösen KohlenstofftrÀger
abgesetzt sind (z.B. getrÀgertes Platin). Die Zentren sind integriert in eine
leitende graphitartige Kohlenstoffmatrix mit hoher PorositÀt, die sich wÀhrend
der Pyrolyse aus den ChelatmolekĂŒlen bildet.
Die Untersuchungen ergeben weiterhin, dass sich die elektronische Umgebung der
katalytisch aktiven Metallatome wesentlich von der in den Porphyrin-
Precursoren unterscheidet. Es ist anzunehmen, dass hierauf die erhöhte
katalytische AktivitĂ€t und StabilitĂ€t der Katalysatoren gegenĂŒber den
VorlĂ€ufersubstanzen zurĂŒckzufĂŒhren ist. In Ăbereinstimmung mit einer
verÀnderten elektronischen Umgebung ist die Feststellung, dass die lokale
Struktur der das Zentrum umgebenden Kohlenstoffmatrix eine hohe
UnregelmĂ€Ăigkeit aufweist. Die experimentellen Ergebnisse werden kritisch im
Hinblick auf die Frage ĂŒberprĂŒft, ob die Zentren einen 2- oder 4
-Elektronentransfer-Mechanismus katalysieren.This thesis presents the results of investigations performed to analyse the
structure and electrochemical activity of the catalytic centres of
electrocatalysts for oxygen reduction in acidic media. The catalysts have been
prepared by pyrolysis of transition-metal macrocycles (iron and cobalt-
porphyrins). This type of material could gain technological significance as
electrocatalyst in polymer-electrolyte membrane fuel cells which are developed
with regard to a future efficient and environmentally sustainable energy
supply.
The investigations concentrate on catalysts that are prepared by a novel
preparation procedure which leads to a higher catalytic activity than other
approaches. Therefore, own structure determining measurements will be compared
with work done by other authors reporting on the properties of heat-treated
transition metal complexes.
Conclusions about the structure of the catalytic centres have been obtained by
Extended X-ray Absorption Fine Structure- (EXAFS), X-ray Absorption Near Edge
Spectroscopy- (XANES) and in-situ XAFS-measurements as well as Mössbauer- and
Electron Spin Resonance- (ESR) spectroscopy. These results are complemented by
electrochemical measurements, X-ray diffractometry, scanning electron and
transmission electron microscopy as well as gas sorption measurements.
The investigations showed that under certain preparation conditions
catalytically inactive metal-containing phases are present in the catalysts
making the identification of the catalytic centres difficult or even
impossible. It was a particular challenge to distinguish between active and
inactive phases. However, it will be shown that these phases can be removed by
an appropriate after-treatment.
It has been proven that the catalytic centres are characterised by the
coordination of metal atoms of iron and cobalt by nitrogen. This indicates a
conservation of the nitrogen-coordinated metal cores (MeN4-units) of the
original chelate complexes of the porphyrins during the process of pyrolysis.
Moreover, from the measurements of Co/Fe-catalysts it was concluded that also
metal atoms that originate from oxalate molecules which had been added as
foaming agents might be present in similar nitrogen-coordinated centres after
pyrolysis. The measurements performed also clarify the differences in
catalytic activity that have been observed varying the preparation process. In
this context, it will be shown that the addition of sulfur does not result in
a modified catalytic centre as hypothesised initially. The enhanced catalytic
activity can rather be attributed to morphological effects.
Unequivocally, it can be shown that the investigated catalysts are
characterised by catalytic centres of molecular structure. Hence, their
constitution is fundamentally different from catalysts where catalytically
active metal particles are deposited on a porous carbon support (e.g. carbon
supported platinum). In our case, the centres are embedded in a conductive
graphite-like carbon matrix of high porosity that is formed during pyrolysis
of the chelate molecules.
Further, the investigations give evidence that the electronic structure of the
catalytically active metal atoms differs significantly from that in the
porphyrin precursors. It is assumed that this difference is responsible for
the increased catalytic activity and chemical stability compared to the
precursor materials. The changed electronic environment is in agreement with
the observation of high disorder in the local carbon matrix. The experimental
results are reviewed with regard to the question whether the centres catalyse
via a 2- of 4-electron transfer mechanism
Alternative Antriebe in der Luftfahrt
Brennstoffzellentechnologie in der Luftfahrt: PEM-Systeme als APU-Ersatz, fĂŒr emissionsfreies Ground-Taxiing und als Antrieb fĂŒr Ultraleichtflugzeug
Improving the environmental impact of civil aircraft by fuel cell technology: concepts and technological progress
Nowadays, new technologies and breakthroughs in the fields of energy efficiency, alternative fuels and added-value electronics are leading to improved, more environmentally sustainable and green thinking applications. Due to the forecasted rapid increase of volume of air traffic, future aircraft generations have to face enhanced requirements concerning productivity, environmental compatibility and higher operational availability, thus effecting technical, operational and economical aspects of in-flight and on-ground power generation systems, even if air transport is responsible for only about 2% of all anthropogenic CO2 emissions. The trend in new aircraft development is toward ââmore electricââ
architectures which is characterized by a higher proportion of electrical systems substituting hydraulically or pneumatically driven components, and, as a result, increasing the amount of electrical power. Fuel cell systems in this context represent a promising solution regarding the enhancement of the energy efficiency for both cruise and ground operations. For several years the Institute of Technical Thermodynamics of the German Aerospace Center (Deutsches Zentrum fâŹur Luft- und Raumfahrt, DLR) in Stuttgart and Hamburg has developed fuel cell systems for aircraft applications. The activities of DLR focus on: identification of fuel cell applications in aircraft in which the properties of fuel cell systems, namely high
electric efficiency, low emissions and silent operation, are capitalized for the aircraft application; design and modeling of possible and advantageous system designs; theoretical and experimental investigations regarding specific aircraft relevant operating conditions; qualification of airworthy fuel cell systems; set up and full scale testing of fuel cell systems for application in research aircraft. In cooperation with Airbus, several fuel cell applications within the aircraft for both ground and cruise operation have been identified. As a consequence, fuel cell systems capable of supporting or even
replacing existing systems have been derived. In this context, the provision of inert gas for the jet fuel (kerosene) tank and electrical cabin power supply, including water regeneration, represent the most promising application fields.
This paper will present the state of development and the evolution discussing the following points:
modeling of different system architectures and evaluation of promising fuel cell systems; experimental evaluation of fuel cell systems under relevant conditions (low pressure, vibrations, reformate operation, etc.); fuel cell test in DLRâs research aircraft ATRA (A320) including the test of an emergency system based on hydrogen and oxygen with 20 kW of electrical power. The fuel cell system was integrated into an A320 aircraft and tested up to a flight altitude of 25 000 feet under several acceleration and inclination conditions; fuel cell tests in Antares-H2âDLRâs new flying test bed
Fuel Cell Systems for a Greener Aviation
The trend in new civil aircraftâs development is toward âmore electricâ aircraft and green sky. Fuel cell systems as possible part of the electrical supply in civil aircraft can allow reaching this target. Indeed fuel cell systems have high electrical efficiency, which can be used for on ground power generation and emergency power on flight, and are only producing water and oxygen depleted air as gas emissions. What it is also very innovative is that this âwaste productsâ can be used to generate water on board and inert gas for the jet fuel tank as fire retardation and suppression measure. For several years the Institute of Technical Thermodynamics of the German Aerospace Centre (Deutsches Zentrum fĂŒr Luft- und Raumfahrt; DLR) in cooperation with Airbus developed fuel cell systems which fulfil these functionalities for both aircraft ground and cruise operation. The main achievements of the last past years are the Antares-H2 development and tests as well as the successful milestones passed with the research aircraft DLR ATRA with fuel cell system test. This paper presents all the modelling and experimental activities of the DLR on fuel cell development for aircraft