17 research outputs found

    Laser-Induced Evoked Potentials in the Brain after Nonperceptible Optical Stimulation at the Neiguan Acupoint: A Preliminary Report

    Get PDF
    We report on small but reproducible human cerebral evoked potentials after bilateral nonperceptible laser needle (658 nm, 40 mW, 500 Όm, 1 Hz) irradiation of the Neiguan acupoint (PC6). The results which are unique in scientific literature were obtained in a 26-year-old female healthy volunteer within a joint study between the Medical University of Graz, the Karl-Franzens University of Graz, and the Graz University of Technology. The findings of the 32-channel evoked potential analysis indicate that exposure to laser needle stimulation with a frequency of 1 Hz can modulate the ascending reticular activating system. Further studies are absolutely necessary to confirm or refute the preliminary findings

    First Steps Toward a Motor Imagery Based Stroke BCI: New Strategy to Set up a Classifier

    Get PDF
    A new approach in motor rehabilitation after stroke is to use motor imagery (MI). To give feedback on MI performance brain–computer interface (BCIs) can be used. This requires a fast and easy acquisition of a reliable classifier. Usually, for training a classifier, electroencephalogram (EEG) data of MI without feedback is used, but it would be advantageous if we could give feedback right from the beginning. The sensorimotor EEG changes of the motor cortex during active and passive movement (PM) and MI are similar. The aim of this study is to explore, whether it is possible to use EEG data from active or PM to set up a classifier for the detection of MI in a group of elderly persons. In addition, the activation patterns of the motor cortical areas of elderly persons were analyzed during different motor tasks. EEG was recorded from three Laplacian channels over the sensorimotor cortex in a sample of 19 healthy elderly volunteers. Participants performed three different tasks in consecutive order, passive, active hand movement, and hand MI. Classifiers were calculated with data of every task. These classifiers were then used to detect event-related desynchronization (ERD) in the MI data. ERD values, related to the different tasks, were calculated and analyzed statistically. The performance of classifiers calculated from passive and active hand movement data did not differ significantly regarding the classification accuracy for detecting MI. The EEG patterns of the motor cortical areas during the different tasks was similar to the patterns normally found in younger persons but more widespread regarding localization and frequency range of the ERD. In this study, we have shown that it is possible to use classifiers calculated with data from passive and active hand movement to detect MI. Hence, for working with stroke patients, a physiotherapy session could be used to obtain data for classifier set up and the BCI-rehabilitation training could start immediately

    On How Mind Wandering Facilitates Creative Incubation While Using Information Technology:A Research Agenda for Robust Triangulation

    Get PDF
    Our minds tend to frequently drift away from present technology-related situations and tasks. Against this background, we seek to provide a better understanding of mind-wandering episodes while using information technology and its link to decisive variables of Information Systems research, such as performance, creativity and flow. Since the academic literature still lacks reliable and validated measurements that can fully account for all facets of mind-wandering episodes while using information technology, our work addresses this gap by presenting a way to triangulate data in the context of a digital insight problem-solving task. This new approach enables researchers to further investigate the effects of spontaneous thought in technology-related settings and is a promising building block for the development of neuroadaptive systems.</p

    KTR: An efficient key management scheme for secure data access control in wireless broadcast services recovery

    Get PDF
    Recent growth in brain-computer interface (BCI) research has increased pressure to report improved performance. However, different research groups report performance in different ways. Hence, it is essential that evaluation procedures are valid and reported in sufficient detail. In this chapter we give an overview of available performance measures such as classification accuracy, cohen’s kappa, information transfer rate (ITR), and written symbol rate. We show how to distinguish results from chance level using confidence intervals for accuracy or kappa. Furthermore, we point out common pitfalls when moving from offline to online analysis and provide a guide on how to conduct statistical tests on (BCI) results

    The hybrid Brain-Computer Interface: a bridge to assistive technology?

    Get PDF
    Brain-Computer Interfaces (BCIs) can be extended by other input signals to form a so-called hybrid BCI (hBCI). Such an hBCI allows the processing of several input signals with at least one brain signal for control purposes, i.e. communication and environmental control. This work shows the principle, technology and application of hBCIs and discusses future objectives

    The Hybrid BCI

    Get PDF
    Nowadays, everybody knows what a hybrid car is. A hybrid car normally has two engines to enhance energy efficiency and reduce CO2 output. Similarly, a hybrid brain-computer interface (BCI) is composed of two BCIs, or at least one BCI and another system. A hybrid BCI, like any BCI, must fulfill the following four criteria: (i) the device must rely on signals recorded directly from the brain; (ii) there must be at least one recordable brain signal that the user can intentionally modulate to effect goal-directed behaviour; (iii) real time processing; and (iv) the user must obtain feedback. This paper introduces hybrid BCIs that have already been published or are in development. We also introduce concepts for future work. We describe BCIs that classify two EEG patterns: one is the event-related (de)synchronisation (ERD, ERS) of sensorimotor rhythms, and the other is the steady-state visual evoked potential (SSVEP). Hybrid BCIs can either process their inputs simultaneously, or operate two systems sequentially, where the first system can act as a “brain switch”. For example, we describe a hybrid BCI that simultaneously combines ERD and SSVEP BCIs. We also describe a sequential hybrid BCI, in which subjects could use a brain switch to control an SSVEP-based hand orthosis. Subjects who used this hybrid BCI exhibited about half the false positives encountered while using the SSVEP BCI alone. A brain switch can also rely on hemodynamic changes measured through near-infrared spectroscopy (NIRS). Hybrid BCIs can also use one brain signal and a different type of input. This additional input can be an electrophysiological signal such as the heart rate, or a signal from an external device such as an eye tracking system

    FORCe: fully online and automated artifact removal for brain-computer interfacing

    Get PDF
    A fully automated and online artifact removal method for the electroencephalogram (EEG) is developed for use in brain-computer interfacing. The method (FORCe) is based upon a novel combination of wavelet decomposition, independent component analysis, and thresholding. FORCe is able to operate on a small channel set during online EEG acquisition and does not require additional signals (e.g. electrooculogram signals). Evaluation of FORCe is performed offline on EEG recorded from 13 BCI particpants with cerebral palsy (CP) and online with three healthy participants. The method outperforms the state-of the-art automated artifact removal methods Lagged auto-mutual information clustering (LAMIC) and Fully automated statistical thresholding (FASTER), and is able to remove a wide range of artifact types including blink, electromyogram (EMG), and electrooculogram (EOG) artifacts
    corecore