7 research outputs found

    Effects of energetic disorder on the low-frequency differential capacitance of organic light emitting diodes

    Get PDF
    It has recently been shown how the injection barriers at the electrode interfaces and the built-in voltage (Vbi) of organic light emitting diodes can be obtained from measurements of the differential capacitance at low frequencies, using the voltage and height of a distinct peak in the capacitance-voltages curves. In this paper, we investigate the effects of Gaussian energetic disorder on the analysis, for single-carrier and double-carrier devices. We show how the disorder affects the peak position and height, and how from combined capacitance-voltage measurements and device modeling the injection barriers and Vbi can be determined. As examples, hole-only and double-carrier devices are investigated based on a blue-emitting polyfluorene-triarylamine copolymer

    Diffusion enhancement in on/off ratchets

    No full text
    We show a diffusion enhancement of suspended polystyrene particles in an electrical on/off ratchet. The enhancement can be described by a simple master equation model. Furthermore, we find that the diffusion enhancement can be described by a general curve whose shape is only determined by the asymmetry of the ratchet repeat unit. The scaling of this curve can be explained from an analytical expression valid for small off-times. Finally, we demonstrate how the master equation model can be used to find the driving parameters for optimal particle separation. (C) 2013 American Institute of Physics

    Modeling of the transient mobility in disordered organic semiconductors with a Gaussian density of states

    Get PDF
    The charge-carrier mobility in organic semiconductors is often studied using non-steady-state experiments. However, energetic disorder can severely hamper the analysis due to the occurrence of a strong time dependence of the mobility caused by carrier relaxation. The multiple-trapping model is known to provide an accurate description of this effect. However, the value of the conduction level energy and the hopping attempt rate, which enter the model as free parameters, are not a priori known for a given material. We show how for the case of a Gaussian density of states both parameters can be deduced from the parameter values used to describe the measured dc current-voltage characteristics within the framework of the extended Gaussian disorder model. The approach is validated using three-dimensional Monte Carlo modeling. In the analysis, the charge-density dependence of the time-dependent mobility is included. The model is shown to successfully predict the low-frequency differential capacitance of sandwich-type devices based on a polyfluorene copolymer

    Scaling of characteristic frequencies of organic electronic ratchets

    Get PDF
    The scaling of the characteristic frequencies of electronic ratchets operating in a flashing mode is investigated by measurements and numerical simulations. The ratchets are based on organic field effect transistors operated in accumulation mode. Oscillating potentials applied to asymmetrically spaced interdigitated finger electrodes embedded in the gate dielectric create a time-dependent, spatially asymmetric perturbation of the transistor channel potential. As a result a net DC current can flow between source and drain despite zero source-drain bias. The frequency at current maximum is linearly dependent on the charge carrier density and the charge carrier mobility and inversely proportional to the squared length of the ratchet period, which can be related to the RC-time of one asymmetric unit. Counter-intuitively, it is independent of driving amplitude. Furthermore, the frequency at current maximum depends on the asymmetry of the ratchet potential whereas the frequency of maximum charge pumping efficiency does not

    3D Printed structural electronics:embedding and connecting electronic components into freeform electronic devices

    No full text
    \u3cp\u3eThe need for personalised and smart products drives the development of structural electronics with mass-customisation capability. A number of challenges need to be overcome in order to address the potential of complete free form manufacturing of electronic devices. One key challenge is the integration of conductive structures and components into 3D printed devices by combining different materials and printing techniques that have nearly incompatible printing conditions. In this paper, several methods to integrate electronic circuits and components into a 3D printed structure are discussed. The functional performance of the resulting structures is described. Structural parts were manufactured with a stereolithography-based 3D printing technique, which was interrupted to pick and place electronic components, followed by either direct writing or squeegee filling of conductive material. A thermal curing step was applied to enhance the bonding and improve the electrical performance. Optical micrography, 4-point resistance measurement and cross-sectional analysis were performed to evaluate functionality.\u3c/p\u3

    Charge transport in amorphous InGaZnO thin film transistors

    Get PDF
    We investigate the mechanism of charge transport in indium gallium zinc oxide (a-IGZO), an amorphous metal-oxide semiconductor. We measured the field-effect mobility and the Seebeck coefficient (S=¿V/¿T) of a-IGZO in thin-film transistors as a function of charge-carrier density for different temperatures. Using these transistors, we further employed a scanning Kelvin probe-based technique to determine the density of states of a-IGZO that is used as the basis for the modeling. After comparing two commonly used models, the band transport percolation model and a mobility edge model, we find that both cannot describe the full properties of the charge transport in the a-IGZO semiconductor. We, therefore, propose a model that extends the mobility edge model to allow for variable range hopping below the mobility edge. The extended mobility edge model gives a superior description of the experimental results. We show that the charge transport is dominated by variable range hopping below, rather than by bandlike transport above the mobility edge

    High efficiency dielectrophoretic ratchet

    Get PDF
    Brownian ratchets enable the use of thermal motion in performing useful work. They typically employ spatial asymmetry to rectify nondirected external forces that drive the system out of equilibrium (cf. running marbles on a shaking washboard). The major application foreseen for Brownian ratchets is high-selectivity fractionation of particle or molecule distributions. Here, we investigate the functioning of an important model system, the on/off ratchet for water-suspended particles, in which interdigitated finger electrodes can be switched on and off to create a time-dependent, spatially periodic but asymmetric potential. Surprisingly, we find that mainly dielectrophoretic rather than electrophoretic forces are responsible for the ratchet effect. This has major implications for the (a)symmetry of the ratchet potential and the settings needed for optimal performance. We demonstrate that by applying a potential offset the ratchet can be optimized such that its particle displacement efficiency reaches the theoretical upper limit corresponding to the electrode geometry and particle size. Efficient fractionation based on size selectivity is therefore not only possible for charged species, but also for uncharged ones, which greatly expands the applicability range of this type of Brownian ratchet
    corecore