20 research outputs found

    Mathematical Properties of a New Levin-Type Sequence Transformation Introduced by \v{C}\'{\i}\v{z}ek, Zamastil, and Sk\'{a}la. I. Algebraic Theory

    Full text link
    \v{C}\'{\i}\v{z}ek, Zamastil, and Sk\'{a}la [J. Math. Phys. \textbf{44}, 962 - 968 (2003)] introduced in connection with the summation of the divergent perturbation expansion of the hydrogen atom in an external magnetic field a new sequence transformation which uses as input data not only the elements of a sequence {sn}n=0\{s_n \}_{n=0}^{\infty} of partial sums, but also explicit estimates {ωn}n=0\{\omega_n \}_{n=0}^{\infty} for the truncation errors. The explicit incorporation of the information contained in the truncation error estimates makes this and related transformations potentially much more powerful than for instance Pad\'{e} approximants. Special cases of the new transformation are sequence transformations introduced by Levin [Int. J. Comput. Math. B \textbf{3}, 371 - 388 (1973)] and Weniger [Comput. Phys. Rep. \textbf{10}, 189 - 371 (1989), Sections 7 -9; Numer. Algor. \textbf{3}, 477 - 486 (1992)] and also a variant of Richardson extrapolation [Phil. Trans. Roy. Soc. London A \textbf{226}, 299 - 349 (1927)]. The algebraic theory of these transformations - explicit expressions, recurrence formulas, explicit expressions in the case of special remainder estimates, and asymptotic order estimates satisfied by rational approximants to power series - is formulated in terms of hitherto unknown mathematical properties of the new transformation introduced by \v{C}\'{\i}\v{z}ek, Zamastil, and Sk\'{a}la. This leads to a considerable formal simplification and unification.Comment: 41 + ii pages, LaTeX2e, 0 figures. Submitted to Journal of Mathematical Physic

    Calcul de pseudo-inverses

    No full text

    Brève communication. Transformations de suites

    No full text

    Calcul de pseudo-inverses

    No full text

    A hierarchically consistent, iterative sequence transformation

    No full text
    Recently, the author proposed a new nonlinear sequence transformation, the iterative J transformation, which was shown to provide excellent results in several applications (Homeier [15]). In the present contribution, this sequence transformation is derived by a hierarchically consistent iteration of some basic transformation. Hierarchical consistency is proposed as an approach to control the well-known problem that the basic transformation can be generalized in many ways. Properties of the J transformation are studied. It is of similar generality as the well-known E algorithm (Brezinski [3], Håvie [18]). It is shown that the J transformation can be implemented quite easily. In addition to the defining representation, there are alternative algorithms for its computation based on generalized differences. The kernel of the J transformation is derived. The expression for the kernel is relatively compact and does not depend on any lower-order transforms. It is shown that several important other sequence transformations can be computed in an economical way using the J transformation
    corecore