4 research outputs found

    Research roadmap for nanosafety - Part III: Closer to the market (CTTM)

    Get PDF
    Nano-products and nano-enabled applications need a clear and easy-to-follow human and environmental safety framework for the development along the innovation chain from initial idea to market and beyond that facilitates navigation through the complex regulatory and approval processes under which different product categories fall. The missing framework results in a lack of (i) solid data regarding roadblocks to market penetration of nano-enabled products as well as the absence of (ii) transparency in terms of which products (e.g. containing nanomaterials (NMs); nano-enabled products) are on the market (e.g. registries) and voluntary schemes and labelling requirements for cosmetics and food, which processes are used for manufacturing nano-enabled products, and (iii) meager inclusiveness in the dialogue (between all stakeholders) most likely exist as a result of the missing framework. The Closer-to-the-Market-Roadmap (abbrev. CTTM) aims at speeding up the progress towards market implementation of nanotechnologies by outlining the steps needed to develop such a framework. In its current form it is addressed towards policy makers, but the ultimate framework will be designed for use by SME and enterprise organisations

    Climate change and freshwater zooplankton: what does it boil down to?

    Get PDF
    Recently, major advances in the climate–zooplankton interface have been made some of which appeared to receive much attention in a broader audience of ecologists as well. In contrast to the marine realm, however, we still lack a more holistic summary of recent knowledge in freshwater. We discuss climate change-related variation in physical and biological attributes of lakes and running waters, high-order ecological functions, and subsequent alteration in zooplankton abundance, phenology, distribution, body size, community structure, life history parameters, and behavior by focusing on community level responses. The adequacy of large-scale climatic indices in ecology has received considerable support and provided a framework for the interpretation of community and species level responses in freshwater zooplankton. Modeling perspectives deserve particular consideration, since this promising stream of ecology is of particular applicability in climate change research owing to the inherently predictive nature of this field. In the future, ecologists should expand their research on species beyond daphnids, should address questions as to how different intrinsic and extrinsic drivers interact, should move beyond correlative approaches toward more mechanistic explanations, and last but not least, should facilitate transfer of biological data both across space and time
    corecore