24 research outputs found

    Site-Specific Multi-Functionalization of the Carrier Protein CRM197 by Disulfide Rebridging for Conjugate Vaccine Development

    Get PDF
    Conjugation of an antigen to a carrier protein is widely used for vaccine development. To develop the next generation of conjugate vaccines, we describe here a method for the controlled multi-functionalization of the widely employed carrier protein CRM197 with a carbohydrate-based antigen and an immune potentiator. The approach is based on the selective reduction of one of the disulfides of CRM197 followed by disulfide rebridging employing an appropriately functionalized dibromopyridazinedione. Efficient protein modification required that the reduction and functionalization with a dibromopyridazinedione was performed as a one-step procedure with control over the reaction temperature. Furthermore, ligations were most successful when dibromopyridazinediones were employed having a functional entity such as a TLR7/8 agonist and a cyclooctyne for further modification. Site-specific conjugation avoids modification of T-epitopes of the carrier protein and covalent attachment of an immune potentiator will ensure that cytokines are produced where the vaccine interacts with relevant immune cells resulting in efficient immune potentiation

    A Biomimetic Synthetic Strategy Can Provide Keratan Sulfate I and II Oligosaccharides with Diverse Fucosylation and Sulfation Patterns

    Get PDF
    Keratan sulfate (KS) is a proteoglycan that is widely expressed in the extracellular matrix of various tissue types, where it performs multiple biological functions. KS is the least understood proteoglycan, which in part is due to a lack of panels of well-defined KS oligosaccharides that are needed for structure-binding studies, as analytical standards, to examine substrate specificities of keratinases, and for drug development. Here, we report a biomimetic approach that makes it possible to install, in a regioselective manner, sulfates and fucosides on oligo- N-acetyllactosamine (LacNAc) chains to provide any structural element of KS by using specific enzyme modules. It is based on the observation that α1,3-fucosides, α2,6-sialosides and C-6 sulfation of galactose (Gal6S) are mutually exclusive and cannot occur on the same LacNAc moiety. As a result, the pattern of sulfation on galactosides can be controlled by installing α1,3-fucosides or α2,6-sialosides to temporarily block certain LacNAc moieties from sulfation by keratan sulfate galactose 6-sulfotransferase (CHST1). The patterns of α1,3-fucosylation and α2,6-sialylation can be controlled by exploiting the mutual exclusivity of these modifications, which in turn controls the sites of sulfation by CHST1. Late-stage treatment with a fucosidase or sialidase to remove blocking fucosides or sialosides provides selectively sulfated KS oligosaccharides. These treatments also unmasked specific galactosides for further modification by CHST1. To showcase the potential of the enzymatic strategy, we have prepared a range of poly-LacNAc derivatives having different patterns of fucosylation and sulfation and several N-glycans decorated by specific arrangements of sulfates

    Conjugation of a Toll-Like Receptor Agonist to Glycans of an HIV Native-Like Envelope Trimer Preserves Neutralization Epitopes

    Get PDF
    Small molecule adjuvants are attractive for enhancing broad protection and durability of immune responses elicited by subunit vaccines. Covalent attachment of an adjuvant to an immunogen is particularly attractive because it simultaneously delivers both entities to antigen presenting cells resulting in more efficient immune activation. There is, however, a lack of methods to conjugate small molecule immune potentiators to viral glycoprotein immunogens without compromising epitope integrity. We describe herein a one-step enzymatic conjugation approach for the covalent attachment of small molecule adjuvants to N-linked glycans of viral glycoproteins. It involves the attachment of an immune potentiator to CMP-Neu5AcN 3 by Cu(I)-catalyzed azide-alkyne 1,3-cycloaddition followed by sialyltransferase-mediated transfer to N-glycans of a viral glycoprotein. The method was employed to modify a native-like HIV envelope trimer with a Toll-like receptor 7/8 agonist. The modification did not compromise Env-trimer recognition by several broadly neutralization antibodies. Electron microscopy confirmed structural integrity of the modified immunogen

    Selective Exoenzymatic Labeling of Lipooligosaccharides of Neisseria gonorrhoeae with α2,6-Sialoside Analogues

    Get PDF
    The interactions between bacteria and their host often rely on recognition processes that involve host or bacterial glycans. Glycoengineering techniques make it possible to modify and study the glycans on the host's eukaryotic cells, but only a few are available for the study of bacterial glycans. Here, we have adapted selective exoenzymatic labeling (SEEL), a chemical reporter strategy, to label the lipooligosaccharides of the bacterial pathogen Neisseria gonorrhoeae, using the recombinant glycosyltransferase ST6Gal1, and three synthetic CMP-sialic acid derivatives. We show that SEEL treatment does not affect cell viability and can introduce an α2,6-linked sialic acid with a reporter group on the lipooligosaccharides by Western blot, flow cytometry and fluorescent microscopy. This new bacterial glycoengineering technique allows for the precise modification, here with α2,6-sialoside derivatives, and direct detection of specific surface glycans on live bacteria, which will aid in further unravelling the precise biological functions of bacterial glycans

    Detection of Bacterial α-l-Fucosidases with an Ortho-Quinone Methide-Based Probe and Mapping of the Probe-Protein Adducts.

    Get PDF
    Fucosidases are associated with several pathological conditions and play an important role in the health of the human gut. For example, fucosidases have been shown to be indicators and/or involved in hepatocellular carcinoma, breast cancer, and helicobacter pylori infections. A prerequisite for the detection and profiling of fucosidases is the formation of a specific covalent linkage between the enzyme of interest and the activity-based probe (ABP). The most commonly used fucosidase ABPs are limited to only one of the classes of fucosidases, the retaining fucosidases. New approaches are needed that allow for the detection of the second class of fucosidases, the inverting type. Here, we report an ortho-quinone methide-based probe with an azide mini-tag that selectively labels both retaining and inverting bacterial α-l-fucosidases. Mass spectrometry-based intact protein and sequence analysis of a probe-labeled bacterial fucosidase revealed almost exclusive single labeling at two specific tryptophan residues outside of the active site. Furthermore, the probe could detect and image extracellular fucosidase activity on the surface of live bacteria

    Probing altered receptor specificities of antigenically drifting human H3N2 viruses by chemoenzymatic synthesis, NMR, and modeling

    Get PDF
    Prototypic receptors for human influenza viruses are N-glycans carrying α2,6-linked sialosides. Due to immune pressure, A/H3N2 influenza viruses have emerged with altered receptor specificities that bind α2,6-linked sialosides presented on extended N-acetyl-lactosamine (LacNAc) chains. Here, binding modes of such drifted hemagglutinin’s (HAs) are examined by chemoenzymatic synthesis of N-glycans having 13C-labeled monosaccharides at strategic positions. The labeled glycans are employed in 2D STD-1H by 13C-HSQC NMR experiments to pinpoint which monosaccharides of the extended LacNAc chain engage with evolutionarily distinct HAs. The NMR data in combination with computation and mutagenesis demonstrate that mutations distal to the receptor binding domain of recent HAs create an extended binding site that accommodates with the extended LacNAc chain. A fluorine containing sialoside is used as NMR probe to derive relative binding affinities and confirms the contribution of the extended LacNAc chain for binding

    Improved isolation and characterization procedure of sialylglycopeptide from egg yolk powder

    No full text
    Sialylglycopeptide (SGP) is a complex bi-antennary N-glycan bearing a short peptide fragment that can be isolated from the yolk of hen eggs. This natural product has gained popularity as a starting material for the semi-synthesis of N-glycans. We have found that current isolation methods provide a glycopeptide contaminated with several related structures, one being a glycopeptide having a hexose directly attached to peptide backbone, most like through the hydroxyl containing side chain of the threonine moiety. Furthermore, current methods employ fresh egg yolks that need to be lyophilized and involve several tedious purification steps. Herein, we report a convenient method for the isolation of gram quantities of homogeneous SGP from commercially available egg yolk powder using solid/liquid extraction and HILIC-HPLC purification

    Improved isolation and characterization procedure of sialylglycopeptide from egg yolk powder

    No full text
    Sialylglycopeptide (SGP) is a complex bi-antennary N-glycan bearing a short peptide fragment that can be isolated from the yolk of hen eggs. This natural product has gained popularity as a starting material for the semi-synthesis of N-glycans. We have found that current isolation methods provide a glycopeptide contaminated with several related structures, one being a glycopeptide having a hexose directly attached to peptide backbone, most like through the hydroxyl containing side chain of the threonine moiety. Furthermore, current methods employ fresh egg yolks that need to be lyophilized and involve several tedious purification steps. Herein, we report a convenient method for the isolation of gram quantities of homogeneous SGP from commercially available egg yolk powder using solid/liquid extraction and HILIC-HPLC purification

    Conjugation of a Toll-Like Receptor Agonist to Glycans of an HIV Native-Like Envelope Trimer Preserves Neutralization Epitopes

    No full text
    Small molecule adjuvants are attractive for enhancing broad protection and durability of immune responses elicited by subunit vaccines. Covalent attachment of an adjuvant to an immunogen is particularly attractive because it simultaneously delivers both entities to antigen presenting cells resulting in more efficient immune activation. There is, however, a lack of methods to conjugate small molecule immune potentiators to viral glycoprotein immunogens without compromising epitope integrity. We describe herein a one-step enzymatic conjugation approach for the covalent attachment of small molecule adjuvants to N-linked glycans of viral glycoproteins. It involves the attachment of an immune potentiator to CMP-Neu5AcN3 by Cu(I)-catalyzed azide-alkyne 1,3-cycloaddition followed by sialyltransferase-mediated transfer to N-glycans of a viral glycoprotein. The method was employed to modify a native-like HIV envelope trimer with a Toll-like receptor 7/8 agonist. The modification did not compromise Env-trimer recognition by several broadly neutralization antibodies. Electron microscopy confirmed structural integrity of the modified immunogen

    Streamlining the chemoenzymatic synthesis of complex N-glycans by a stop and go strategy

    No full text
    Contemporary chemoenzymatic approaches can provide highly complex multi-antennary N-linked glycans. These procedures are, however, very demanding and typically involve as many as 100 chemical steps to prepare advanced intermediates that can be diversified by glycosyltransferases in a branch-selective manner to give asymmetrical structures commonly found in nature. Only highly specialized laboratories can perform such syntheses, which greatly hampers progress in glycoscience. Here we describe a biomimetic approach in which a readily available bi-antennary glycopeptide can be converted in ten or fewer chemical and enzymatic steps into multi-antennary N-glycans that at each arm can be uniquely extended by glycosyltransferases to give access to highly complex asymmetrically branched N-glycans. A key feature of our approach is the installation of additional branching points using recombinant MGAT4 and MGAT5 in combination with unnatural sugar donors. At an appropriate point in the enzymatic synthesis, the unnatural monosaccharides can be converted into their natural counterpart, allowing each arm to be elaborated into a unique appendage
    corecore