63 research outputs found

    Hyperelastic Material Properties of Mouse Skin under Compression

    Get PDF
    The skin is a dynamic organ whose complex material properties are capable of withstanding continuous mechanical stress while accommodating insults and organism growth. Moreover, synchronized hair cycles, comprising waves of hair growth, regression and rest, are accompanied by dramatic fluctuations in skin thickness in mice. Whether such structural changes alter skin mechanics is unknown. Mouse models are extensively used to study skin biology and pathophysiology, including aging, UV-induced skin damage and somatosensory signaling. As the skin serves a pivotal role in the transfer function from sensory stimuli to neuronal signaling, we sought to define the mechanical properties of mouse skin over a range of normal physiological states. Skin thickness, stiffness and modulus were quantitatively surveyed in adult, female mice (Mus musculus). These measures were analyzed under uniaxial compression, which is relevant for touch reception and compression injuries, rather than tension, which is typically used to analyze skin mechanics. Compression tests were performed with 105 full-thickness, freshly isolated specimens from the hairy skin of the hind limb. Physiological variables included body weight, hair-cycle stage, maturity level, skin site and individual animal differences. Skin thickness and stiffness were dominated by hair-cycle stage at young (6–10 weeks) and intermediate (13–19 weeks) adult ages but by body weight in mature mice (26–34 weeks). Interestingly, stiffness varied inversely with thickness so that hyperelastic modulus was consistent across hair-cycle stages and body weights. By contrast, the mechanics of hairy skin differs markedly with anatomical location. In particular, skin containing fascial structures such as nerves and blood vessels showed significantly greater modulus than adjacent sites. Collectively, this systematic survey indicates that, although its structure changes dramatically throughout adult life, mouse skin at a given location maintains a constant elastic modulus to compression throughout normal physiological stages

    Social Touch

    Get PDF
    Interpersonal or social touch is an intuitive and powerful way to express and communicate emotions, comfort a friend, bond with teammates, comfort a child in pain, and soothe someone who is stressed. If there is one thing that the current pandemic is showing us, it is that social distancing can make some people crave physical interaction through social touch. The notion of “skin-hunger” has become tangible for many.Social touch differs at a functional and anatomical level from discriminative touch, and has clear effects at physiological, emotional, and behavioural levels. Social touch is a topic in psychology (perception, emotion, behaviour), neuroscience (neurophysiological pathways), computer science (mediated touch communication), engineering (haptic devices), robotics (social robots that can touch), humanities (science and technology studies), and sociology (the social implications of touch). Our current scientific knowledge of social touch is scattered across disciplines and not yet adequate for the purpose of meeting today's challenges of connecting human beings through the mediating channel of technology

    Editorial:Social touch

    Get PDF
    Is social touch in crisis? According to Jewitt et al. the answer is affirmative. The decline in social touch over the past two decades (amplified during COVID-19) and inappropriate use of social touch are their main arguments

    A Simulation Study of the Factors Influencing the Risk of Intraoperative Slipping

    Get PDF
    AbstractBackgroundTo identify the impact of weight, table surface, and table type on slipping in a simulation of minimally invasive gynecologic surgery.MethodsA mannequin was placed into increasing Trendelenburg until a slip was observed; the table angle at the time of the event was measured (slip angle). The influence of mannequin position (supine vs. lithotomy), weight, table surface, and model was evaluated. A linear regression model was used to analyze the data.ResultsMannequin weight, bed surface, and bed type all significantly impacted the slip angles. In general, higher mannequin weights tolerated significantly more Trendelenburg before slipping in the supine position but less in lithotomy compared to lower weights. In lithotomy, the disposable sheet and gelpad performed worse than the bean bag, egg crate foam, and bedsheet. There was no difference in slipping because of bed surface in the supine model. The Skytron operating table performed significantly better than the Steris operating table when tested with the bedsheet.ConclusionOperative position, patient weight, and bed surface together influence the slipping propensity. In lithotomy, heavier patients were more prone to slipping while the inverse was true in supine. The egg crate foam, bean bag, and bedsheet were the best antislip surfaces. Operating room table choice can mitigate slippage

    Dermal Sensory Regenerative Peripheral Nerve Interface for Reestablishing Sensory Nerve Feedback in Peripheral Afferents in the Rat

    Get PDF
    Background: Without meaningful, intuitive sensory feedback, even the most advanced myoelectric devices require significant cognitive demand to control. The dermal sensory regenerative peripheral nerve interface (DS-RPNI) is a biological interface designed to establish high-fidelity sensory feedback from prosthetic limbs. Methods: DS-RPNIs were constructed in rats by securing fascicles of residual sensory peripheral nerves into autologous dermal grafts, with the objectives of confirming regeneration of sensory afferents within DS-RPNIs and establishing the reliability of afferent neural response generation with either mechanical or electrical stimulation. Results: Two months after implantation, DS-RPNIs were healthy and displayed well-vascularized dermis with organized axonal collaterals throughout and no evidence of neuroma. Electrophysiologic signals were recorded proximal from DS-RPNI's sural nerve in response to both mechanical and electrical stimuli and compared with (1) full-thickness skin, (2) deepithelialized skin, and (3) transected sural nerves without DS-RPNI. Mechanical indentation of DS-RPNIs evoked compound sensory nerve action potentials (CSNAPs) that were like those evoked during indentation of full-thickness skin. CSNAP firing rates and waveform amplitudes increased in a graded fashion with increased mechanical indentation. Electrical stimuli delivered to DS-RPNIs reliably elicited CSNAPs at low current thresholds, and CSNAPs gradually increased in amplitude with increasing stimulation current. Conclusions: These findings suggest that afferent nerve fibers successfully reinnervate DS-RPNIs, and that graded stimuli applied to DS-RPNIs produce proximal sensory afferent responses similar to those evoked from normal skin. This confirmation of graded afferent signal transduction through DS-RPNI neural interfaces validate DS-RPNI's potential role of facilitating sensation in human-machine interfacing. Clinical Relevance Statement: The DS-RPNI is a novel biotic-abiotic neural interface that allows for transduction of sensory stimuli into neural signals. It is expected to advance the restoration of natural sensation and development of sensorimotor control in prosthetics.</p

    SA-I Mechanoreceptor Position in Fingertip Skin May Impact Sensitivity to Edge Stimuli

    Full text link
    Background: The skin plays a role in conditioning mechanical indentation into distributions of stress/strain that mechanoreceptors convert into neural signals. Solid mechanics methods have modelled the skin to predict the in vivo neural response from mechanoreceptors. Despite their promise, current models cannot explain the role that anatomical positioning and receptor organ morphology play in producing differences in neural response. This work hypothesises that the skin's intermediate ridges may help explain, in part, the sensitivity of slowly adapting type I (SA-I) mechanoreceptors to edge stimuli. Method: Two finite-element models of the fingertip were built, validated and used to analyse the functionality of the intermediate ridges. One of the two-dimensional, cross-sectional models included intermediate ridges, while the other did not. The analysis sought to determine if intermediate ridges (1) increase the magnitude of strain energy density (SED) near the SA-I location and (2) help differentiate one 2.0-mm indenter from two 0.5-mm wide indenters with a 1.0-mm gap. Results: Higher concentrations of SED were found near the tips of the intermediate ridges, the anatomical location that coincides with the SA-I receptors. This first result suggested that the location of the SA-Is in the stiffer epidermal tissue helps magnify their response to edge stimuli. The second result was that both models were equally capable of predicting the spatial structure within the in vivo neural responses, and therefore the addition of intermediate ridges did not help in differentiating the indenters. Conclusion: The finding, a 15%–35% increase in response when the sampling point lies within the stiffer tissue at the same depth, seeks to inform the positioning of force sensors in robotic skin substrates

    An elasticity-curvature illusion decouples cutaneous and proprioceptive cues in active exploration of soft objects.

    Full text link
    Our sense of touch helps us encounter the richness of our natural world. Across a myriad of contexts and repetitions, we have learned to deploy certain exploratory movements in order to elicit perceptual cues that are salient and efficient. The task of identifying optimal exploration strategies and somatosensory cues that underlie our softness perception remains relevant and incomplete. Leveraging psychophysical evaluations combined with computational finite element modeling of skin contact mechanics, we investigate an illusion phenomenon in exploring softness; where small-compliant and large-stiff spheres are indiscriminable. By modulating contact interactions at the finger pad, we find this elasticity-curvature illusion is observable in passive touch, when the finger is constrained to be stationary and only cutaneous responses from mechanosensitive afferents are perceptible. However, these spheres become readily discriminable when explored volitionally with musculoskeletal proprioception available. We subsequently exploit this phenomenon to dissociate relative contributions from cutaneous and proprioceptive signals in encoding our percept of material softness. Our findings shed light on how we volitionally explore soft objects, i.e., by controlling surface contact force to optimally elicit and integrate proprioceptive inputs amidst indiscriminable cutaneous contact cues. Moreover, in passive touch, e.g., for touch-enabled displays grounded to the finger, we find those spheres are discriminable when rates of change in cutaneous contact are varied between the stimuli, to supplant proprioceptive feedback
    • …
    corecore