1,102 research outputs found
H2 distribution during 2-phase Molecular Cloud Formation
We performed high-resolution, 3D MHD simulations and we compared to
observations of translucent molecular clouds. We show that the observed
populations of rotational levels of H2 can arise as a consequence of the
multi-phase structure of the ISM.Comment: 2 pages, 1 figure. Due to appear in the proceedings of the 6th
Zermatt ISM Symposium: "Conditions and Impact of Star Formation: From Lab to
Space
Dense molecular globulettes and the dust arc towards the runaway O star AE Aur (HD 34078)
Some runaway stars are known to display IR arc-like structures around them,
resulting from their interaction with surrounding interstellar material. The
properties of these features as well as the processes involved in their
formation are still poorly understood. We aim at understanding the physical
mechanisms that shapes the dust arc observed near the runaway O star AEAur
(HD34078). We obtained and analyzed a high spatial resolution map of the
CO(1-0) emission that is centered on HD34078, and that combines data from both
the IRAM interferometer and 30m single-dish antenna. The line of sight towards
HD34078 intersects the outer part of one of the detected globulettes, which
accounts for both the properties of diffuse UV light observed in the field and
the numerous molecular absorption lines detected in HD34078's spectra,
including those from highly excited H2 . Their modeled distance from the star
is compatible with the fact that they lie on the 3D paraboloid which fits the
arc detected in the 24 {\mu}m Spitzer image. Four other compact CO globulettes
are detected in the mapped area. These globulettes have a high density and
linewidth, and are strongly pressure-confined or transient. The good spatial
correlation between the CO globulettes and the IR arc suggests that they result
from the interaction of the radiation and wind emitted by HD 34078 with the
ambient gas. However, the details of this interaction remain unclear. A wind
mass loss rate significantly larger than the value inferred from UV lines is
favored by the large IR arc size, but does not easily explain the low velocity
of the CO globulettes. The effect of radiation pressure on dust grains also
meets several issues in explaining the observations. Further observational and
theoretical work is needed to fully elucidate the processes shaping the gas and
dust in bow shocks around runaway O stars. (Abridged)Comment: Accepted for publication in Astronomy & Astrophysic
The ionization fraction gradient across the Horsehead edge: An archetype for molecular clouds
The ionization fraction plays a key role in the chemistry and dynamics of
molecular clouds. We study the H13CO+, DCO+ and HOC+ line emission towards the
Horsehead, from the shielded core to the UV irradiated cloud edge, i.e., the
Photodissociation Region (PDR), as a template to investigate the ionization
fraction gradient in molecular clouds. We analyze a PdBI map of the H13CO+
J=1-0 line, complemented with IRAM-30m H13CO+ and DCO+ higher-J line maps and
new HOC+ and CO+ observations. We compare self-consistently the observed
spatial distribution and line intensities with detailed depth-dependent
predictions of a PDR model coupled with a nonlocal radiative transfer
calculation. The chemical network includes deuterated species, 13C
fractionation reactions and HCO+/HOC+ isomerization reactions. The role of
neutral and charged PAHs in the cloud chemistry and ionization balance is
investigated. The detection of HOC+ reactive ion towards the Horsehead PDR
proves the high ionization fraction of the outer UV irradiated regions, where
we derive a low [HCO+]/[HOC+]~75-200 abundance ratio. In the absence of PAHs,
we reproduce the observations with gas-phase metal abundances, [Fe+Mg+...],
lower than 4x10(-9) (with respect to H) and a cosmic-rays ionization rate of
zeta=(5+/-3)x10(-17) s(-1). The inclusion of PAHs modifies the ionization
fraction gradient and increases the required metal abundance. The ionization
fraction in the Horsehead edge follows a steep gradient, with a scale length of
~0.05 pc (or ~25''), from [e-]~10(-4) (or n_e ~ 1-5 cm(-3)) in the PDR to a few
times ~10(-9) in the core. PAH^- anions play a role in the charge balance of
the cold and neutral gas if substantial amounts of free PAHs are present ([PAH]
>10(-8)).Comment: 13 pages, 7 figures, 6 tables. Accepted for publication in A&A
(english not edited
A Herschel/HIFI Legacy Survey of HF and H2O in the Galaxy: Probing Diffuse Molecular Cloud Chemistry
We combine Herschel observations of a total of 12 sources to construct the
most uniform survey of HF and H2O in our Galactic disk. Both molecules are
detected in absorption along all sight lines. The high spectral resolution of
the Heterodyne Instrument for the Far-Infrared (HIFI) allows us to compare the
HF and H2O distributions in 47 diffuse cloud components sampling the disk. We
find that the HF and H2O velocity distributions follow each other almost
perfectly and establish that HF and H2O probe the same gas-phase volume. Our
observations corroborate theoretical predictions that HF is a sensitive tracer
of H2 in diffuse clouds, down to molecular fractions of only a few percent.
Using HF to trace H2 in our sample, we find that the N(H2O)-to-N(HF) ratio
shows a narrow distribution with a median value of 1.51. Our results further
suggest that H2O might be used as a tracer of H2 -within a factor 2.5- in the
diffuse interstellar medium. We show that the measured factor of ~2.5 variation
around the median is driven by true local variations in the H2O abundance
relative to H2 throughout the disk. The latter variability allows us to test
our theoretical understanding of the chemistry of oxygen-bearing molecules in
the diffuse gas. We show that both gas-phase and grain-surface chemistry are
required to reproduce our H2O observations. This survey thus confirms that
grain surface reactions can play a significant role in the chemistry occurring
in the diffuse interstellar medium n_H < 1000 cm^-3.Comment: 53 pages; 12 figures, accepted for publication in ApJ main journa
Simulated CII observations for SPICA/SAFARI
We investigate the case of CII 158 micron observations for SPICA/SAFARI using
a three-dimensional magnetohydrodynamical (MHD) simulation of the diffuse
interstellar medium (ISM) and the Meudon PDR code. The MHD simulation consists
of two converging flows of warm gas (10,000 K) within a cubic box 50 pc in
length. The interplay of thermal instability, magnetic field and self-gravity
leads to the formation of cold, dense clumps within a warm, turbulent
interclump medium. We sample several clumps along a line of sight through the
simulated cube and use them as input density profiles in the Meudon PDR code.
This allows us to derive intensity predictions for the CII 158 micron line and
provide time estimates for the mapping of a given sky area.Comment: 4 pages, 5 figures, to appear in the proceedings of the workshop "The
Space Infrared Telescope for Cosmology & Astrophysics: Revealing the Origins
of Planets and Galaxies" (July 2009, Oxford, United Kingdom
The IRAM-30m line survey of the Horsehead PDR: III. High abundance of complex (iso-)nitrile molecules in UV-illuminated gas
Complex (iso-)nitrile molecules, such as CH3CN and HC3N, are relatively
easily detected in our Galaxy and in other galaxies. We constrain their
chemistry through observations of two positions in the Horsehead edge: the
photo-dissociation region (PDR) and the dense, cold, and UV-shielded core just
behind it. We systematically searched for lines of CH3CN, HC3N, C3N, and some
of their isomers in our sensitive unbiased line survey at 3, 2, and 1mm. We
derived column densities and abundances through Bayesian analysis using a large
velocity gradient radiative transfer model. We report the first clear detection
of CH3NC at millimeter wavelength. We detected 17 lines of CH3CN at the PDR and
6 at the dense core position, and we resolved its hyperfine structure for 3
lines. We detected 4 lines of HC3N, and C3N is clearly detected at the PDR
position. We computed new electron collisional rate coefficients for CH3CN, and
we found that including electron excitation reduces the derived column density
by 40% at the PDR position. While CH3CN is 30 times more abundant in the PDR
than in the dense core, HC3N has similar abundance at both positions. The
isomeric ratio CH3NC/CH3CN is 0.15+-0.02. In the case of CH3CN, pure gas phase
chemistry cannot reproduce the amount of CH3CN observed in the UV-illuminated
gas. We propose that CH3CN gas phase abundance is enhanced when ice mantles of
grains are destroyed through photo-desorption or thermal-evaporation in PDRs,
and through sputtering in shocks. (abridged)Comment: Accepted for publication in Astronomy & Astrophysic
Interstellar CH absorption in the diffuse interstellar medium along the sight-lines to G10.6–0.4 (W31C), W49N, and W51
We report the detection of the ground state N, J = 1, 3/2 → 1, 1/2 doublet of the methylidyne radical CH at ~532 GHz and ~536 GHz with
the Herschel/HIFI instrument along the sight-line to the massive star-forming regions G10.6–0.4 (W31C), W49N, and W51. While the molecular
cores associated with these massive star-forming regions show emission lines, clouds in the diffuse interstellar medium are detected in absorption
against the strong submillimeter background. The combination of hyperfine structure with emission and absorption results in complex profiles,
with overlap of the different hyperfine components. The opacities of most of the CH absorption features are linearly correlated with those of CCH,
CN, and HCO^+ in the same velocity intervals. In specific narrow velocity intervals, the opacities of CN and HCO^+ deviate from the mean trends,
giving rise to more opaque absorption features. We propose that CCH can be used as another tracer of the molecular gas in the absence of better
tracers, with [CCH]/[H_2] ~3.2 ± 1.1 × 10^(−8). The observed [CN]/[CH], [CCH]/[CH] abundance ratios suggest that the bulk of the diffuse matter
along the lines of sight has gas densities n_H = n(H) + 2n(H_2) ranging between 100 and 1000 cm^(−3)
The hyperfine structure in the rotational spectrum of CF+
Context. CF+ has recently been detected in the Horsehead and Orion Bar
photo-dissociation regions. The J=1-0 line in the Horsehead is double-peaked in
contrast to other millimeter lines. The origin of this double-peak profile may
be kinematic or spectroscopic. Aims. We investigate the effect of hyperfine
interactions due to the fluorine nucleus in CF+ on the rotational transitions.
Methods. We compute the fluorine spin rotation constant of CF+ using high-level
quantum chemical methods and determine the relative positions and intensities
of each hyperfine component. This information is used to fit the theoretical
hyperfine components to the observed CF+ line profiles, thereby employing the
hyperfine fitting method in GILDAS. Results. The fluorine spin rotation
constant of CF+ is 229.2 kHz. This way, the double-peaked CF+ line profiles are
well fitted by the hyperfine components predicted by the calculations. The
unusually large hyperfine splitting of the CF+ line therefore explains the
shape of the lines detected in the Horsehead nebula, without invoking intricate
kinematics in the UV-illuminated gas.Comment: 2 pages, 1 figure, Accepted for publication in A&
- …