3 research outputs found

    Chest X-ray Analysis With Deep Learning-Based Software as a Triage Test for Pulmonary Tuberculosis: An Individual Patient Data Meta-Analysis of Diagnostic Accuracy.

    Get PDF
    BACKGROUND: Automated radiologic analysis using computer-aided detection software (CAD) could facilitate chest X-ray (CXR) use in tuberculosis diagnosis. There is little to no evidence on the accuracy of commercially available deep learning-based CAD in different populations, including patients with smear-negative tuberculosis and people living with human immunodeficiency virus (HIV, PLWH). METHODS: We collected CXRs and individual patient data (IPD) from studies evaluating CAD in patients self-referring for tuberculosis symptoms with culture or nucleic acid amplification testing as the reference. We reanalyzed CXRs with three CAD programs (CAD4TB version (v) 6, Lunit v3.1.0.0, and qXR v2). We estimated sensitivity and specificity within each study and pooled using IPD meta-analysis. We used multivariable meta-regression to identify characteristics modifying accuracy. RESULTS: We included CXRs and IPD of 3727/3967 participants from 4/7 eligible studies. 17% (621/3727) were PLWH. 17% (645/3727) had microbiologically confirmed tuberculosis. Despite using the same threshold score for classifying CXR in every study, sensitivity and specificity varied from study to study. The software had similar unadjusted accuracy (at 90% pooled sensitivity, pooled specificities were: CAD4TBv6, 56.9% [95% confidence interval {CI}: 51.7-61.9]; Lunit, 54.1% [95% CI: 44.6-63.3]; qXRv2, 60.5% [95% CI: 51.7-68.6]). Adjusted absolute differences in pooled sensitivity between PLWH and HIV-uninfected participants were: CAD4TBv6, -13.4% [-21.1, -6.9]; Lunit, +2.2% [-3.6, +6.3]; qXRv2: -13.4% [-21.5, -6.6]; between smear-negative and smear-positive tuberculosis was: were CAD4TBv6, -12.3% [-19.5, -6.1]; Lunit, -17.2% [-24.6, -10.5]; qXRv2, -16.6% [-24.4, -9.9]. Accuracy was similar to human readers. CONCLUSIONS: For CAD CXR analysis to be implemented as a high-sensitivity tuberculosis rule-out test, users will need threshold scores identified from their own patient populations and stratified by HIV and smear status

    Artificial intelligence-reported chest X-ray findings of culture-confirmed pulmonary tuberculosis in people with and without diabetes

    No full text
    Objectives: We applied computer-aided detection (CAD) software for chest X-ray (CXR) analysis to determine if diabetes affects the radiographic presentation of tuberculosis. Methods: From March 2017-July 2018, we consecutively enrolled adults being evaluated for pulmonary tuberculosis in Karachi, Pakistan. Participants had same-day CXR, two sputum mycobacterial cultures, and random blood glucose measurement. We identified diabetes through self-report or glucose >11.1mMol/L. We included participants with culture-confirmed tuberculosis for this analysis. We used linear regression to estimate associations between CAD-reported tuberculosis abnormality score (range 0.00 to 1.00) and diabetes, adjusting for age, body mass index, sputum smear-status, and prior tuberculosis. We also compared radiographic abnormalities between participants with and without diabetes. Results: 63/272 (23%) of included participants had diabetes. After adjustment, diabetes was associated with higher CAD tuberculosis abnormality scores (p < 0.001). Diabetes was not associated with frequency of CAD-reported radiographic abnormalities apart from cavitary disease; participants with diabetes were more likely to have cavitary disease (74.6% vs 61.2% p = 0.07), particularly non-upper zone cavitary disease (17% vs 7.8%, p = 0.09). Conclusions: CAD analysis of CXR suggests diabetes is associated with more extensive radiographic abnormalities and with greater likelihood of cavities outside upper lung zones

    Chest X-ray Analysis With Deep Learning-Based Software as a Triage Test for Pulmonary Tuberculosis: An Individual Patient Data Meta-Analysis of Diagnostic Accuracy

    No full text
    Background Automated radiologic analysis using computer-aided detection software (CAD) could facilitate chest X-ray (CXR) use in tuberculosis diagnosis. There is little to no evidence on the accuracy of commercially available deep learning-based CAD in different populations, including patients with smear-negative tuberculosis and people living with human immunodeficiency virus (HIV, PLWH). Methods We collected CXRs and individual patient data (IPD) from studies evaluating CAD in patients self-referring for tuberculosis symptoms with culture or nucleic acid amplification testing as the reference. We reanalyzed CXRs with three CAD programs (CAD4TB version (v) 6, Lunit v3.1.0.0, and qXR v2). We estimated sensitivity and specificity within each study and pooled using IPD meta-analysis. We used multivariable meta-regression to identify characteristics modifying accuracy. Results We included CXRs and IPD of 3727/3967 participants from 4/7 eligible studies. 17% (621/3727) were PLWH. 17% (645/3727) had microbiologically confirmed tuberculosis. Despite using the same threshold score for classifying CXR in every study, sensitivity and specificity varied from study to study. The software had similar unadjusted accuracy (at 90% pooled sensitivity, pooled specificities were: CAD4TBv6, 56.9% [95% confidence interval {CI}: 51.7-61.9]; Lunit, 54.1% [95% CI: 44.6-63.3]; qXRv2, 60.5% [95% CI: 51.7-68.6]). Adjusted absolute differences in pooled sensitivity between PLWH and HIV-uninfected participants were: CAD4TBv6, -13.4% [-21.1, -6.9]; Lunit, +2.2% [-3.6, +6.3]; qXRv2: -13.4% [-21.5, -6.6]; between smear-negative and smear-positive tuberculosis was: were CAD4TBv6, -12.3% [-19.5, -6.1]; Lunit, -17.2% [-24.6, -10.5]; qXRv2, -16.6% [-24.4, -9.9]. Accuracy was similar to human readers. Conclusions For CAD CXR analysis to be implemented as a high-sensitivity tuberculosis rule-out test, users will need threshold scores identified from their own patient populations and stratified by HIV and smear status. An individual patient data (IPD) meta-analysis found the accuracy of commercially available deep learning-based chest X-ray analysis software for detecting tuberculosis varied between studies and by patient characteristics. Diagnostic heterogeneity poses an implementation challenge for this novel technology
    corecore