5 research outputs found

    GiSAO.db: a database for ageing research

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Age-related gene expression patterns of <it>Homo sapiens </it>as well as of model organisms such as <it>Mus musculus</it>, <it>Saccharomyces cerevisiae</it>, <it>Caenorhabditis elegans </it>and <it>Drosophila melanogaster </it>are a basis for understanding the genetic mechanisms of ageing. For an effective analysis and interpretation of expression profiles it is necessary to store and manage huge amounts of data in an organized way, so that these data can be accessed and processed easily.</p> <p>Description</p> <p>GiSAO.db (Genes involved in senescence, apoptosis and oxidative stress database) is a web-based database system for storing and retrieving ageing-related experimental data. Expression data of genes and miRNAs, annotation data like gene identifiers and GO terms, orthologs data and data of follow-up experiments are stored in the database. A user-friendly web application provides access to the stored data. KEGG pathways were incorporated and links to external databases augment the information in GiSAO.db. Search functions facilitate retrieval of data which can also be exported for further processing.</p> <p>Conclusions</p> <p>We have developed a centralized database that is very well suited for the management of data for ageing research. The database can be accessed at <url>https://gisao.genome.tugraz.at</url> and all the stored data can be viewed with a guest account.</p

    Microarray analysis reveals similarity between CD8+CD28– T cells from young and elderly persons, but not of CD8+CD28+ T cells

    No full text
    We isolated highly purified CD8+CD28+ and CD8+CD28– T cells populations from healthy young and elderly persons for gene expression profiling using Affymetrix oligonucleotide microarrays. We demonstrate that the gene expression profile of CD8+CD28– T cells is very similar in young and elderly persons. In contrast, CD8+CD28+ in elderly differ from CD8+CD28+ in young persons. Hierarchical clustering revealed that CD8+CD28+ in elderly are located between CD8+CD28+ in young and CD8+CD28– (young and old) T cells regarding their differentiation state. Our study demonstrates a dichotomy of gene expression levels between CD8+CD28+ T cells in young and elderly persons but a similarity between CD8+CD28– T cells in young and elderly persons. As CD8+CD28+ T cells from elderly and young persons are distinct due to a different composition of the population, these results suggest that the gene expression profile does not depend on chronological age but depends on the differentiation state of the individual cell types. The original publication is available at www.springerlink.co
    corecore