4 research outputs found

    Rationale and design of decision: a double-blind, randomized, placebo-controlled phase III trial evaluating the efficacy and safety of sorafenib in patients with locally advanced or metastatic radioactive iodine (RAI)-refractory, differentiated thyroid cancer

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The incidence of thyroid cancer and the number of patients who die from this disease are increasing globally. Differentiated thyroid cancer (DTC) is the histologic subtype present in most patients and is primarily responsible for the increased overall incidence of thyroid cancer. Sorafenib is a multikinase inhibitor that targets several molecular signals believed to be involved in the pathogenesis of thyroid cancer, including those implicated in DTC. In phase II studies of patients with DTC, sorafenib treatment has yielded a median progression-free survival (PFS) of 58 to 84 weeks and disease control rates of 59% to 100%. The DECISION trial was designed to assess the ability of sorafenib to improve PFS in patients with locally advanced or metastatic, radioactive iodine (RAI)-refractory DTC.</p> <p>Methods/design</p> <p>DECISION is a multicenter, double-blind, randomized, placebo-controlled phase III study in patients with locally advanced/metastatic RAI<b>-</b>refractory DTC. Study treatment will continue until radiographically documented disease progression, unacceptable toxicity, noncompliance, or withdrawal of consent. Efficacy will be evaluated every 56 days (2 cycles), whereas safety will be evaluated every 28 days (1 cycle) for the first 8 months and every 56 days thereafter. Following disease progression, patients may continue or start sorafenib, depending on whether they were randomized to receive sorafenib or placebo, at investigator discretion. Patients originally randomized to receive sorafenib will be followed up every 3 months for overall survival (OS); patients originally randomized to receive placebo will be followed up every month for 8 months after cross-over to sorafenib. The duration of the trial is expected to be 30 months from the time the first patient is randomized until the planned number of PFS events is attained. The primary endpoint is PFS; secondary endpoints include OS, time to disease progression, disease control rate, response rate, duration of response, safety, and pharmacokinetic analysis.</p> <p>Discussion</p> <p>The DECISION study has been designed to test whether sorafenib improves PFS in patients with locally advanced or metastatic RAI-refractory DTC.</p> <p>Trial Registration</p> <p>ClinicalTrials.gov Identifier: <a href="http://www.clinicaltrials.gov/ct2/show/NCT00984282">NCT00984282</a>; EudraCT: 2009-012007-25.</p

    Long-Term Safety of Canakinumab in Patients with Gouty Arthritis.

    No full text
    Background/Purpose: Gouty arthritis (GA) is a chronic inflammatory disease. Targeting the inflammatory pathway through IL-1_ inhibition with canakinumab (CAN) may provide significant long-term benefits. CAN safety versus triamcinolone acetonide (TA) over initial 24 weeks (blinded study) for patients (pts) with history of frequent attacks (_3 in year before baseline) was reported earlier from core (_-RELIEVED [_-REL] and _-REL-II) and first extension (E1) studies1. Herein we present full 18-month long-term CAN safety data, including open-label second extension (E2) studies. Methods: GA pts completing _-REL E1 and _-REL-II E1 studies1 were enrolled in these 1-year, open-label, E2 studies. All pts entering E2, whether randomized to CAN or TA, received CAN 150 mg sc on demand upon new attack. Data are presented only for pts randomized to CAN, and are reported cumulatively, i.e. including corresponding data from previously reported core and E1 studies. Long-term safety outcomes and safety upon re-treatment are presented as incidence rate per 100 patient-years (pyr) of study participation for AEs and SAEs. Deaths are reported for all pts (randomized to CAN or TA). Selected predefined notable laboratory abnormalities are shown (neutrophils, platelets, liver and renal function tests). Long-term attack rate per year is also provided. Results: In total, 69/115 (60%) and 72/112 (64.3%) of the pts randomized to CAN in the two core studies entered the two E2 studies, of which 68 and 64 pts, respectively completed the E2 studies. The 2 study populations had differing baseline comorbidity and geographic origin. Lab data (not time adjusted) for neutropenia appears worse after retreatment in _-REL E2, and deterioration of creatinine clearance appears worse after retreatment (Table 1). The time-adjusted incidence rates for AEs were 302.4/100 pyr and 360/100 pyr, and for SAEs were 27.9/100 pyr and 13.9/100 pyr in _-REL E2 and _-REL-II E2 respectively (Table 1). The time-adjusted incidence rates of any AEs, infection AEs, any SAEs, and selected SAEs before and after re-treatment are presented in Table 1. Incidence rates for AEs and SAEs declined after re-treatment, with the exception of SAEs in _-REL-II E2, which increased from 2.9/100 pyr to 10.9/100 pyr (no infection SAEs after retreatment in _-REL-II E2, and other SAEs fit no special pattern). In the total safety population (N_454, core and all extensions), there were 4 deaths, 2 in the core studies previously reported1 and 2 during the _-REL E2 study (one patient in the CAN group died from pneumonia; one patient in the TA group who never received CAN died of pneumococcal sepsis). None of the deaths was suspected by investigators to be study drug related. The mean rates of new attacks per year on CAN were 1.21 and 1.18 in _-REL E2 and in _-REL-II E2. Conclusion: The clinical safety profile of CAN upon re-treatment was maintained long-term with no new infection concern
    corecore