5 research outputs found

    Stable isotope variation in tooth enamel from Neogene hippopotamids : monitor of meso and global climate and rift dynamics on the Albertine Rift, Uganda

    Full text link
    The Neogene was a period of long-term global cooling and increasing climatic variability. Variations in African-Asian monsoon intensity over the last 7 Ma have been deduced from patterns of eolian dust export into the Indian Ocean and Mediterranean Sea as well as from lake level records in the East African Rift System (EARS). However, lake systems not only depend on rainfall patterns, but also on the size and physiography of river catchment areas. This study is based on stable isotope proxy data (¹⁸O/¹⁶O, ¹³C/¹²C) from tooth enamel of hippopotamids (Mammalia) and aims in unravelling long-term climate and watershed dynamics that control the evolution of palaeolake systems in the western branch of the EARS (Lake Albert, Uganda) during the Late Neogene (7. 5 Ma to recent). Having no dietary preferences with respect to wooded (C₃) versus grassland (C₄) vegetation, these territorial, water-dependant mammals are particularly useful for palaeoclimate analyses. As inhabitants of lakes and rivers, hippopotamid tooth enamel isotope data document mesoclimates of topographic depressions, such as the rift valleys and, therefore, changes in relative valley depth instead of exclusively global climate changes. Consequently, we ascribe a synchronous maximum in ¹⁸O/¹⁶O and ¹³C/¹²C composition of hippopotamid enamel centred around 1.5-2.5 Ma to maximum aridity and/or maximum hydrological isolation of the rift floor from rift-external river catchment areas in response to the combined effects of rift shoulder uplift and subsidence of the rift valley floor. Structural rearrangements by ~2. 5 Ma within the northern segment of the Albertine Rift are well constrained by reversals in river flow, cannibalisation of catchments, biogeographic turnover and uplift of the Rwenzori horst. However, a growing rain shadow is not obvious in 18O/16O signatures of the hippopotamid teeth of the Albertine Rift. According to our interpretation, this is the result of the overriding effect of evaporation on 18O/16O responding to aridification of the basin floor by a valley air circulation system through relative deepening of the valley. On the other hand, a synchronous arid pulse is not so clearly recorded in palaeosol data and mammalian fauna of the eastern branch of the EARS. This discrepancy indicates that rift mesoclimates may represent an underestimated aspect in previous palaeoclimate reconstructions from rift valley data and represent a clear limitation to attempts at global climate reconstructions. The results of this study also suggest that using 18O/16O data as a proxy to rain shadow evolution must take into account relative basin subsidence to properly document mountain range uplift.13 page(s

    Ancient, highly heterogeneous mantle beneath Gakkel ridge, Arctic Ocean

    Full text link
    The Earth\u27s mantle beneath ocean ridges is widely thought to be depleted by previous melt extraction, but well homogenized by convective stirring. This inference of homogeneity has been complicated by the occurrence of portions enriched in incompatible elements. Here we show that some refractory abyssal peridotites from the ultraslow-spreading Gakkel ridge (Arctic Ocean) have very depleted 187Os/188Os ratios with model ages up to 2 billion years, implying the long-term preservation of refractory domains in the asthenospheric mantle rather than their erasure by mantle convection. The refractory domains would not be sampled by mid-ocean-ridge basalts because they contribute little to the genesis of magmas. We thus suggest that the upwelling mantle beneath mid-ocean ridges is highly heterogeneous, which makes it difficult to constrain its composition by mid-ocean-ridge basalts alone. Furthermore, the existence of ancient domains in oceanic mantle suggests that using osmium model ages to constrain the evolution of continental lithosphere should be approached with caution. ©2008 Nature Publishing Group
    corecore