74 research outputs found

    Vortex Plastic Flow, B(x,y,H(t)),M(H(t)),Jc(B(t))B(x,y,H(t)), M(H(t)), J_c(B(t)), Deep in the Bose Glass and Mott-Insulator Regimes

    Full text link
    We present simulations of flux-gradient-driven superconducting vortices interacting with strong columnar pinning defects as an external field H(t)H(t) is quasi-statically swept from zero through a matching field BϕB_{\phi}. We analyze several measurable quantities, including the local flux density B(x,y,H(t)) B(x,y,H(t)), magnetization M(H(t))M(H(t)), critical current Jc(B(t))J_{c}(B(t)), and the individual vortex flow paths. We find a significant change in the behavior of these quantities as the local flux density crosses BϕB_{\phi}, and quantify it for many microscopic pinning parameters. Further, we find that for a given pin density Jc(B)J_c(B) can be enhanced by maximizing the distance between the pins for B<Bϕ B < B_{\phi} .Comment: 4 pages, 4 PostScript Figure

    Quantum depinning of a pancake-vortex from a columnar defect

    Full text link
    We consider the problem of the depinning of a weakly driven (FFcF\ll F_{c}) pancake vortex from a columnar defect in a Josephson-coupled superconductor, where FF denotes the force acting on the vortex (FcF_{c} is the critical force). The dynamics of the vortex is supposed to be of the Hall type. The Euclidean action SEucl(T)S_{Eucl}(T) is calculated in the entire temperature range; the result is universal and does not depend on the detailed form of the pinning potential. We show that the transition from quantum to classical behavior is second-order like with the temperature TcT_{c} of the transition scaling like F4/3.F^{{4}/{3}}. Special attention is paid to the regime of applicability of our results, in particular, the influence of the large vortex mass appearing in the superclean limit is discussed.Comment: 11 pages, RevTeX, 4 figures inserte

    Interactions, Distribution of Pinning Energies, and Transport in the Bose Glass Phase of Vortices in Superconductors

    Full text link
    We study the ground state and low energy excitations of vortices pinned to columnar defects in superconductors, taking into account the long--range interaction between the fluxons. We consider the ``underfilled'' situation in the Bose glass phase, where each flux line is attached to one of the defects, while some pins remain unoccupied. By exploiting an analogy with disordered semiconductors, we calculate the spatial configurations in the ground state, as well as the distribution of pinning energies, using a zero--temperature Monte Carlo algorithm minimizing the total energy with respect to all possible one--vortex transfers. Intervortex repulsion leads to strong correlations whenever the London penetration depth exceeds the fluxon spacing. A pronounced peak appears in the static structure factor S(q)S(q) for low filling fractions f0.3f \leq 0.3. Interactions lead to a broad Coulomb gap in the distribution of pinning energies g(ϵ)g(\epsilon) near the chemical potential μ\mu, separating the occupied and empty pins. The vanishing of g(ϵ)g(\epsilon) at μ\mu leads to a considerable reduction of variable--range hopping vortex transport by correlated flux line pinning.Comment: 16 pages (twocolumn), revtex, 16 figures not appended, please contact [email protected]

    Thermally activated Hall creep of flux lines from a columnar defect

    Full text link
    We analyse the thermally activated depinning of an elastic string (line tension ϵ\epsilon) governed by Hall dynamics from a columnar defect modelled as a cylindrical potential well of depth V0V_{0} for the case of a small external force F.F. An effective 1D field Hamiltonian is derived in order to describe the 2D string motion. At high temperatures the decay rate is proportional to F5/2T1/2exp[F0/FU(F)/T],F^{{5}/{2}}T^{-{1}/{2}} \exp{\left [{F_{0}}/{F}-{U(F)}/{T}\right ]}, with F0F_{0} a constant of order of the critical force and U(F) \sim{\left ({\epsilon V_{0}})}^{{1}/{2}}{V_{0}/{F}} the activation energy. The results are applied to vortices pinned by columnar defects in superclean superconductors.Comment: 12 pages, RevTeX, 2 figures inserte

    Vortex Pinning and the Non-Hermitian Mott Transition

    Full text link
    The boson Hubbard model has been extensively studied as a model of the zero temperature superfluid/insulator transition in Helium-4 on periodic substrates. It can also serve as a model for vortex lines in superconductors with a magnetic field parallel to a periodic array of columnar pins, due to a formal analogy between the vortex lines and the statistical mechanics of quantum bosons. When the magnetic field has a component perpendicular to the pins, this analogy yields a non-Hermitian boson Hubbard model. At integer filling, we find that for small transverse fields, the insulating phase is preserved, and the transverse field is exponentially screened away from the boundaries of the superconductor. At larger transverse fields, a ``superfluid'' phase of tilted, entangled vortices appears. The universality class of the transition is found to be that of vortex lines entering the Meissner phase at H_{c1}, with the additional feature that the direction of the tilted vortices at the transition bears a non-trivial relationship to the direction of the applied magnetic field. The properties of the Mott Insulator and flux liquid phases with tilt are also discussed.Comment: 20 pages, 12 figures included in text; to appear in Physical Review

    Iron Behaving Badly: Inappropriate Iron Chelation as a Major Contributor to the Aetiology of Vascular and Other Progressive Inflammatory and Degenerative Diseases

    Get PDF
    The production of peroxide and superoxide is an inevitable consequence of aerobic metabolism, and while these particular "reactive oxygen species" (ROSs) can exhibit a number of biological effects, they are not of themselves excessively reactive and thus they are not especially damaging at physiological concentrations. However, their reactions with poorly liganded iron species can lead to the catalytic production of the very reactive and dangerous hydroxyl radical, which is exceptionally damaging, and a major cause of chronic inflammation. We review the considerable and wide-ranging evidence for the involvement of this combination of (su)peroxide and poorly liganded iron in a large number of physiological and indeed pathological processes and inflammatory disorders, especially those involving the progressive degradation of cellular and organismal performance. These diseases share a great many similarities and thus might be considered to have a common cause (i.e. iron-catalysed free radical and especially hydroxyl radical generation). The studies reviewed include those focused on a series of cardiovascular, metabolic and neurological diseases, where iron can be found at the sites of plaques and lesions, as well as studies showing the significance of iron to aging and longevity. The effective chelation of iron by natural or synthetic ligands is thus of major physiological (and potentially therapeutic) importance. As systems properties, we need to recognise that physiological observables have multiple molecular causes, and studying them in isolation leads to inconsistent patterns of apparent causality when it is the simultaneous combination of multiple factors that is responsible. This explains, for instance, the decidedly mixed effects of antioxidants that have been observed, etc...Comment: 159 pages, including 9 Figs and 2184 reference

    Bryodin, a single-chain ribosome-inactivating protein, selectively inhibits the growth of HIV-1-infected cells and reduces HIV-1 production.

    No full text
    Bryodin, a single-chain ribosome-inactivating protein (RIP) isolated from Bryonia cretica ssp dioica (cucurbitaceae), was found to selectively inhibit the growth of persistently HIV-1-infected T lymphoma cells (KE37/1) and human lung fibroblast when used in concentrations from 2-20 &mu;g/ml. Uninfected KE37/1 cells remained unaffected at the same doses of bryodin. In addition, bryodin reduced HIV production in the surviving infected cells. Two isoforms of bryodin were purified by dye ligand chromatography. Both isoforms exerted the growth-inhibiting influence and reduced HIV production. Trichosanthin, another member of the RIP family, had similar inhibitory effects on the growth of HIV-1 infected cells and on HIV-1 production. Bryodin and trichosanthin were effective in about the same dose range. No selective effects for HIV-infected cells were observed with the RIPs gelonin and ricin
    corecore