112 research outputs found

    Hemispheric lateralization of a molecular signal for pain modulation in the amygdala

    Get PDF
    The extracellular signal-regulated kinase (ERK) cascade has been shown to be a key modulator of pain processing in the central nucleus of the amygdala (CeA) in mice. ERK is activated in the CeA during persistent inflammatory pain and this activation is both necessary and sufficient to induce peripheral tactile hypersensitivity. Interestingly, biochemical studies show that inflammation-induced ERK activation in the CeA only occurs in the right, but not the left hemisphere. This inflammation-induced ERK activation in the right CeA is independent of the side of peripheral inflammation, suggesting that there is a dominant role of the right hemisphere in the modulation of pain by ERK activation in the CeA. However, the functional significance of this biochemical lateralization has yet to be determined. In the present study, we tested the hypothesis that modulation of pain by ERK signaling in the CeA is functionally lateralized. We acutely blocked ERK activation in the CeA by infusing the MEK inhibitor U0126 into the right or the left hemisphere and then measured the behavioral effects on inflammation-induced mechanical hypersensitivity in mice. Our results show that blockade of ERK activation in the right, but not the left CeA, decreases inflammation-induced peripheral hypersensitivity independent of the side of peripheral injury. These findings demonstrate that modulation of pain by ERK signaling in the CeA is functionally lateralized to the right hemisphere, suggesting a dominant role of the right amygdala in pain processing

    Opioids alter paw placement during walking, confounding assessment of analgesic efficacy in a postsurgical pain model in mice

    Get PDF
    Introduction: Hind paw-directed assays are commonly used to study the analgesic effects of opioids in mice. However, opioid-induced hyperlocomotion can obscure results of such assays. Objectives: We aimed to overcome this potential confound by using gait analysis to observe hind paw usage during walking in mice. Methods: We measured changes in the paw print area after induction of postsurgical pain (using the paw incision model) and treatment with oxycodone. Results: Paw incision surgery reduced the paw print area of the injured hind paw as mice avoided placing the incised section of the paw on the floor. Surprisingly, oxycodone caused a tiptoe-like gait in mice, reducing the paw print area of both hind paws. Further investigation of this opioid-induced phenotype revealed that analgesic doses of oxycodone or morphine dose-dependently reduced the hind paw print area in uninjured mice. The gait changes were not dependent on opioid-induced increases in the locomotor activity; speed and paw print area had no correlation in opioid-treated mice, and other analgesic compounds that alter locomotor activity did not affect the paw print area. Conclusion: Unfortunately, the opioid-induced tiptoe gait phenotype prevented gait analysis from being a viable metric for demonstrating opioid analgesia in injured mice. However, this work reveals an important, previously uncharacterized effect of treatment with analgesic doses of opioids on paw placement. Our characterization of how opioids affect gait has important implications for the use of mice to study opioid pharmacology and suggests that scientists should use caution when using hind paw-directed nociceptive assays to test opioid analgesia in mice

    Deletion of Tsc2 in nociceptors reduces target innervation, ion channel expression, and sensitivity to heat

    Get PDF
    AbstractThe mechanistic target of rapamycin complex 1 (mTORC1) is known to regulate cellular growth pathways, and its genetic activation is sufficient to enhance regenerative axon growth following injury to the central or peripheral nervous systems. However, excess mTORC1 activation may promote innervation defects, and mTORC1 activity mediates injury-induced hypersensitivity, reducing enthusiasm for the pathway as a therapeutic target. While mTORC1 activity is required for full expression of some pain modalities, the effects of pathway activation on nociceptor phenotypes and sensory behaviors are currently unknown. To address this, we genetically activated mTORC1 in mouse peripheral sensory neurons by conditional deletion of its negative regulator Tuberous Sclerosis Complex 2 (Tsc2). Consistent with the well-known role of mTORC1 in regulating cell size, soma size and axon diameter of C-nociceptors were increased in Tsc2-deleted mice. Glabrous skin and spinal cord innervation by C-fiber neurons were also disrupted. Transcriptional profiling of nociceptors enriched by fluorescence-associated cell sorting (FACS) revealed downregulation of multiple classes of ion channels as well as reduced expression of markers for peptidergic nociceptors in Tsc2-deleted mice. In addition to these changes in innervation and gene expression, Tsc2-deleted mice exhibited reduced noxious heat sensitivity and decreased injury-induced cold hypersensitivity, but normal baseline sensitivity to cold and mechanical stimuli. Together, these data show that excess mTORC1 activity in sensory neurons produces changes in gene expression, neuron morphology and sensory behavior.</jats:p

    Metabotropic glutamate receptor 2/3 (mGluR2/3) activation suppresses TRPV1 sensitization in mouse, but not human sensory neurons

    Get PDF
    AbstractThe use of human tissue to validate putative analgesic targets identified in rodents is a promising strategy for improving the historically poor translational record of preclinical pain research. We recently demonstrated that in mouse and human sensory neurons, agonists for metabotropic glutamate receptors 2 and 3 (mGluR2/3) reduce membrane hyperexcitability produced by the inflammatory mediator prostaglandin E2(PGE2). Previous rodent studies indicate that mGluR2/3 can also reduce peripheral sensitization by suppressing inflammation-induced sensitization of TRPV1. Whether this observation similarly translates to human sensory neurons has not yet been tested. We found that activation of mGluR2/3 with the agonist APDC suppressed PGE2-induced sensitization of TRPV1 in mouse, but not human, sensory neurons. We also evaluated sensory neuron expression of the gene transcripts for mGluR2 (Grm2), mGluR3 (Grm3), and TRPV1 (Trpv1). The majority ofTrpv1+mouse and human sensory neurons expressedGrm2and/orGrm3, and in both mice and humans,Grm2was expressed in a greater percentage of sensory neurons thanGrm3. Although we demonstrated a functional difference in the modulation of TRPV1 sensitization by mGluR2/3 activation between mouse and human, there were no species differences in the gene transcript colocalization of mGluR2 or mGluR3 with TRPV1 that might explain this functional difference. Taken together with our previous work, these results suggest that mGluR2/3 activation suppresses only some aspects of human sensory neuron sensitization caused by PGE2. These differences have implications for potential healthy human voluntary studies or clinical trials evaluating the analgesic efficacy of mGluR2/3 agonists or positive allosteric modulators.</jats:p

    Impaired inflammatory pain and thermal hyperalgesia in mice expressing neuron-specific dominant negative mitogen activated protein kinase kinase (MEK)

    Get PDF
    BACKGROUND: Numerous studies have implicated spinal extracellular signal-regulated kinases (ERKs) as mediators of nociceptive plasticity. These studies have utilized pharmacological inhibition of MEK to demonstrate a role for ERK signaling in pain, but this approach cannot distinguish between effects of ERK in neuronal and non-neuronal cells. The present studies were undertaken to test the specific role of neuronal ERK in formalin-induced inflammatory pain. Dominant negative MEK (DN MEK) mutant mice in which MEK function is suppressed exclusively in neurons were tested in the formalin model of inflammatory pain. RESULTS: Formalin-induced second phase spontaneous pain behaviors as well as thermal hyperalgesia measured 1 – 3 hours post-formalin were significantly reduced in the DN MEK mice when compared to their wild type littermate controls. In addition, spinal ERK phosphorylation following formalin injection was significantly reduced in the DN MEK mice. This was not due to a reduction of the number of unmyelinated fibers in the periphery, since these were almost double the number observed in wild type controls. Further examination of the effects of suppression of MEK function on a downstream target of ERK phosphorylation, the A-type potassium channel, showed that the ERK-dependent modulation of the A-type currents is significantly reduced in neurons from DN MEK mice compared to littermate wild type controls. CONCLUSION: Our results demonstrate that the neuronal MEK-ERK pathway is indeed an important intracellular cascade that is associated with formalin-induced inflammatory pain and thermal hyperalgesia

    Genetic Targeting of ERK1 Suggests a Predominant Role for ERK2 in Murine Pain Models

    Get PDF
    The extracellular signal-regulated kinase (ERK) isoforms, ERK1 and ERK2, are believed to be key signaling molecules in nociception and nociceptive sensitization. Studies utilizing inhibitors targeting the shared ERK1/2 upstream activator, mitogen-activated protein kinase kinase (MEK), and transgenic mice expressing a dominant negative form of MEK have established the importance of ERK1/2 signaling. However, these techniques do not discriminate between ERK1 and ERK2. To dissect the function of each isoform in pain, we utilized mice with a targeted genetic deletion of ERK1 (ERK1 KO) to test the hypothesis that ERK1 is required for behavioral sensitization in rodent pain models. Despite activation (phosphorylation) of ERK1 following acute noxious stimulation and in models of chronic pain, we found that ERK1 was not required for formalin-induced spontaneous behaviors, complete Freund’s adjuvant-induced heat and mechanical hypersensitivity, and spared nerve injury-induced mechanical hypersensitivity. However, ERK1 deletion did delay formalin-induced long-term heat hypersensitivity, without affecting formalin-induced mechanical hypersensitivity, suggesting that ERK1 partially shapes long-term responses to formalin. Interestingly, ERK1 deletion resulted in elevated basal ERK2 phosphorylation. However, this did not appear to influence nociceptive processing, since inflammation-induced ERK2 phosphorylation and pERK1/2 immunoreactivity in spinal cord were not elevated in ERK1 KO mice. Additionally, systemic MEK inhibition with SL327 attenuated formalin-induced spontaneous behaviors similarly in WT and ERK1 KO mice, indicating that unrelated signaling pathways do not functionally compensate for the loss of ERK1. Taken together, these results suggest that ERK1 plays a limited role in nociceptive sensitization and supports a predominant role for ERK2 in these processes
    • …
    corecore