18 research outputs found
Recovering Homography from Camera Captured Documents using Convolutional Neural Networks
Removing perspective distortion from hand held camera captured document
images is one of the primitive tasks in document analysis, but unfortunately,
no such method exists that can reliably remove the perspective distortion from
document images automatically. In this paper, we propose a convolutional neural
network based method for recovering homography from hand-held camera captured
documents.
Our proposed method works independent of document's underlying content and is
trained end-to-end in a fully automatic way. Specifically, this paper makes
following three contributions: Firstly, we introduce a large scale synthetic
dataset for recovering homography from documents images captured under
different geometric and photometric transformations; secondly, we show that a
generic convolutional neural network based architecture can be successfully
used for regressing the corners positions of documents captured under wild
settings; thirdly, we show that L1 loss can be reliably used for corners
regression. Our proposed method gives state-of-the-art performance on the
tested datasets, and has potential to become an integral part of document
analysis pipeline.Comment: 10 pages, 8 figure
Topological structures of adiabatic phase for multi-level quantum systems
The topological properties of adiabatic gauge fields for multi-level
(three-level in particular) quantum systems are studied in detail. Similar to
the result that the adiabatic gauge field for SU(2) systems (e.g. two-level
quantum system or angular momentum systems, etc) have a monopole structure, the
curvature two-forms of the adiabatic holonomies for SU(3) three-level and SU(3)
eight-level quantum systems are shown to have monopole-like (for all levels) or
instanton-like (for the degenerate levels) structures.Comment: 15 pages, no figures. Accepted by J.Phys.
Relativistic Brownian Motion
Stimulated by experimental progress in high energy physics and astrophysics,
the unification of relativistic and stochastic concepts has re-attracted
considerable interest during the past decade. Focusing on the framework of
special relativity, we review, here, recent progress in the phenomenological
description of relativistic diffusion processes. After a brief historical
overview, we will summarize basic concepts from the Langevin theory of
nonrelativistic Brownian motions and discuss relevant aspects of relativistic
equilibrium thermostatistics. The introductory parts are followed by a detailed
discussion of relativistic Langevin equations in phase space. We address the
choice of time parameters, discretization rules, relativistic
fluctuation-dissipation theorems, and Lorentz transformations of stochastic
differential equations. The general theory is illustrated through analytical
and numerical results for the diffusion of free relativistic Brownian
particles. Subsequently, we discuss how Langevin-type equations can be obtained
as approximations to microscopic models. The final part of the article is
dedicated to relativistic diffusion processes in Minkowski spacetime. Due to
the finiteness of velocities in relativity, nontrivial relativistic Markov
processes in spacetime do not exist; i.e., relativistic generalizations of the
nonrelativistic diffusion equation and its Gaussian solutions must necessarily
be non-Markovian. We compare different proposals that were made in the
literature and discuss their respective benefits and drawbacks. The review
concludes with a summary of open questions, which may serve as a starting point
for future investigations and extensions of the theory.Comment: review article, 159 pages, references updated, misprints corrected,
App. A.4. correcte
The impact of hydrogen peroxide supply on LPMO activity and overall saccharification efficiency of a commercial cellulase cocktail
Background: The discovery of enzymes named lytic polysaccharide monooxygenases (LPMOs) has had a major impact on the efficiency of current commercial cellulase cocktails for saccharification of lignocellulosic biomass. However, the notion that LPMOs use molecular oxygen as a co-substrate and require two externally delivered electrons per catalytic cycle poses a challenge in the development of efficient large-scale industrial processes. Building on the recent discovery that H2O2, rather than O-2, is the co-substrate of LPMOs, we show here how cellulose degradation by the LPMO-containing commercial cellulase cocktail-Cellic (R) CTec2 can be controlled and boosted by supplying the reaction with H2O2.
Results: The controlled supply of anaerobic hydrolysis reactions with H2O2 and sub-stoichiometric amounts of reductant increased apparent LPMO activity by almost two orders of magnitude compared to standard aerobic reactions utilizing O-2 and stoichiometric amounts of reductant. Improved LPMO activity was correlated with enhanced saccharification rates and yields for a model cellulosic substrate (Avicel) as well as industrial lignocellulosic substrates (sulfite-pulped Norway spruce and steam-exploded birch), although the magnitude of the effects was substrate dependent. Improvements in lignocellulose conversions were achieved at low H2O2 feeding rates (in the range of 90-600 mu M h(-1)). Tight control of LPMO reactions by controlled supply of H2O2 under anaerobic conditions was possible.
Conclusion: We report saccharification rates and yields for a model substrate (Avicel) and industrial lignocellulosic substrates that, at low H2O2 feeding rates, are higher than those seen under standard aerobic conditions. In an industrial setting, controlling and supplying molecular oxygen and stoichiometric amounts of reductant are challenging. The present report shows that the use of small amounts of a liquid bulk chemical, H2O2, provides an alternative to the currently available processes, which likely is cheaper and more easy to control, while giving higher product yields
Alloy Design of Feedstock Material for Additive Manufacturing—Exploring the Al-Co-Cr-Fe-Ni-Ti Compositionally Complex Alloys
The need for sustainable use of resources requires continuous improvement in the energy efficiency and development of new approaches to the design and processing of suitable materials. The concept of high entropy alloys (HEAs) has recently been extended to more general compositional complex alloys (CCAs) and multi-principal element alloys (MPEAs) [1]. One of the major challenges on the way to application of these alloys is the extensive design and selection efforts due to the great variety of possible compositions and its consequences for workability and resulting material properties. The favorable high-temperature strength of Ni-based and Co-based superalloys is ascribed to a defined γ/γ’ structure consisting of a disordered FCC A1 matrix and ordered L12 γ’ precipitates [2]. In the current work we extended this design concept to CCAs, allowing disordered BCC A2 and ordered B2 phases in additions or in substitution of the original γ/γ’ structure. We used a high-throughput screening approach combining CALPHAD-based computational tools with in situ alloying by means of laser cladding. Wall-type specimens with gradient composition in the system Al-Co-Cr-Fe-Ni-Ti with varying Al, Ti and Cr content were analyzed. The combined modelling and experimental screening approach was demonstrated to be a powerful tool for designing new high performance AM-ready feedstock
Enzymatic degradation of sulfite-pulped softwoods and the role of LPMOs
Abstract Background Recent advances in the development of enzyme cocktails for degradation of lignocellulosic biomass, especially the discovery of lytic polysaccharide monooxygenases (LPMOs), have opened new perspectives for process design and optimization. Softwood biomass is an abundant resource in many parts of the world, including Scandinavia, but efficient pretreatment and subsequent enzymatic hydrolysis of softwoods are challenging. Sulfite pulping-based pretreatments, such as in the BALI™ process, yield substrates that are relatively easy to degrade. We have assessed how process conditions affect the efficiency of modern cellulase preparations in processing of such substrates. Results We show that efficient degradation of sulfite-pulped softwoods with modern, LPMO-containing cellulase preparations requires the use of conditions that promote LPMO activity, notably the presence of molecular oxygen and sufficient reducing power. Under LPMO activity-promoting conditions, glucan conversion after 48-h incubation with Cellic® CTec3 reached 73.7 and 84.3% for Norway spruce and loblolly pine, respectively, at an enzyme loading of 8 mg/g of glucan. The presence of free sulfite ions had a negative effect on hydrolysis efficiency. Lignosulfonates, produced from lignin during sulfite pretreatment, showed a potential to activate LPMOs. Spiking of Celluclast®, a cellulase cocktail with low LPMO activity, with monocomponent cellulases or an LPMO showed that the addition of the LPMO was clearly more beneficial than the addition of any classical cellulase. Addition of the LPMO in reactions with spruce increased the saccharification yield from approximately 60% to the levels obtained with Cellic® CTec3. Conclusions In this study, we have demonstrated the importance of LPMOs for efficient enzymatic degradation of sulfite-pulped softwood. We have also shown that to exploit the full potential of LPMO-rich cellulase preparations, conditions promoting LPMO activity, in particular the presence of oxygen and reducing equivalents are necessary, as is removal of residual sulfite from the pretreatment step. The use of lignosulfonates as reductants may reduce the costs related to the addition of small molecule reductants in sulfite pretreatment-based biorefineries
Combinatorial Alloy Design and Microstructure Evolution in Laser-cladded Al–Co–Cr–Fe–Ni–Ti Compositionally Complex Alloys
In this work, we propose a strategy for high-throughput design and development of compositionally complex alloys combining theoretical and experimental alloy screening. This methodology was applied for the exploration of the (Co2CrFeNi2)1-x-yTixAly subsystem of so-called high entropy superalloys in the Al–Co–Cr–Fe–Ni–Ti alloy system. Alloy design was guided by thermodynamic calculations based on the CALPHAD approach. The evolution of the microstructure with increasing Al and Ti content was analyzed in the as-built, homogenized and age-hardened conditions by means of scanning electron microscopy,energy-dispersive X-ray spectroscopy and electron backscattered diffraction. Additionally, the evolution of the sample hardness with increasing Al and Ti contents was determined for all conditions. Based on the experimental results, the reliability of the CALPHAD calculations was assessed. Generally, a good agreement between calculations and experiments is achieved in the homogenized state. In the aged conditions, the CALPHAD predictions of the precipitation processes are partly inaccurate and need improvement. Optimal Al and Ti concentrations are derived for age hardening through L12 and combined L12 + B2 precipitations
Enzymatic degradation of sulfite-pulped softwoods and the role of LPMOs
Abstract Background Recent advances in the development of enzyme cocktails for degradation of lignocellulosic biomass, especially the discovery of lytic polysaccharide monooxygenases (LPMOs), have opened new perspectives for process design and optimization. Softwood biomass is an abundant resource in many parts of the world, including Scandinavia, but efficient pretreatment and subsequent enzymatic hydrolysis of softwoods are challenging. Sulfite pulping-based pretreatments, such as in the BALI™ process, yield substrates that are relatively easy to degrade. We have assessed how process conditions affect the efficiency of modern cellulase preparations in processing of such substrates. Results We show that efficient degradation of sulfite-pulped softwoods with modern, LPMO-containing cellulase preparations requires the use of conditions that promote LPMO activity, notably the presence of molecular oxygen and sufficient reducing power. Under LPMO activity-promoting conditions, glucan conversion after 48-h incubation with Cellic® CTec3 reached 73.7 and 84.3% for Norway spruce and loblolly pine, respectively, at an enzyme loading of 8 mg/g of glucan. The presence of free sulfite ions had a negative effect on hydrolysis efficiency. Lignosulfonates, produced from lignin during sulfite pretreatment, showed a potential to activate LPMOs. Spiking of Celluclast®, a cellulase cocktail with low LPMO activity, with monocomponent cellulases or an LPMO showed that the addition of the LPMO was clearly more beneficial than the addition of any classical cellulase. Addition of the LPMO in reactions with spruce increased the saccharification yield from approximately 60% to the levels obtained with Cellic® CTec3. Conclusions In this study, we have demonstrated the importance of LPMOs for efficient enzymatic degradation of sulfite-pulped softwood. We have also shown that to exploit the full potential of LPMO-rich cellulase preparations, conditions promoting LPMO activity, in particular the presence of oxygen and reducing equivalents are necessary, as is removal of residual sulfite from the pretreatment step. The use of lignosulfonates as reductants may reduce the costs related to the addition of small molecule reductants in sulfite pretreatment-based biorefineries