16 research outputs found

    Scientific Opportunities for Monitoring at Environmental Remediation Sites (SOMERS): Integrated Systems-Based Approaches to Monitoring

    Get PDF
    Through an inter-disciplinary effort, DOE is addressing a need to advance monitoring approaches from sole reliance on cost- and labor-intensive point-source monitoring to integrated systems-based approaches such as flux-based approaches and the use of early indicator parameters. Key objectives include identifying current scientific, technical and implementation opportunities and challenges, prioritizing science and technology strategies to meet current needs within the DOE complex for the most challenging environments, and developing an integrated and risk-informed monitoring framework

    Scientific Opportunities for Monitoring of Environmental Remediation Sites (SOMERS) - 12224

    Get PDF
    ABSTRACT The US Department of Energy (DOE) is responsible for risk reduction and cleanup of its nuclear weapons complex. DOE maintains the largest cleanup program in the world, currently spanning over a million acres in 13 states. The inventory of contaminated materials includes 90 million gallons of radioactive waste, 6.4 trillion liters of groundwater, and 40 million cubic meters of soil and debris. It is not feasible to completely restore many sites to predisposal conditions. Any contamination left in place will require monitoring, engineering controls and/or land use restrictions to protect human health and environment. Research and development efforts to date have focused on improving characterization and remediation. Yet, monitoring will result in the largest life-cycle costs and will be critical to improving performance and protection. Through an inter-disciplinary effort, DOE is addressing a need to advance monitoring approaches from sole reliance on cost-and labor-intensive point-source monitoring to integrated systems-based approaches such as flux-based approaches and the use of early indicator parameters. Key objectives include identifying current scientific, technical and implementation opportunities and challenges, prioritizing science and technology strategies to meet current needs within the DOE complex for the most challenging environments, and developing an integrated and risk-informed monitoring framework

    Crustal homogenization revealed by U–Pb zircon ages and Hf isotope evidence from the Late Cretaceous granitoids of the Agaçören intrusive suite (Central Anatolia/Turkey)

    No full text
    Geochemical and isotopic evidence from the Agacoren Igneous Association in central Anatolia-Turkey indicates that this suite of calc-alkaline granitic rocks have undergone crustal homogenization during regional metamorphic and related magmatic events. Whole-rock chemical and Sr-Nd isotopic data of the granitoids reveal crustal affinity with an earlier subduction component. Zircons show inherited cores and subsequent magmatic overgrowths. The laser ablation ICP-MS Pb-206/U-238 zircon ages are determined as 84.1 +/- 1.0 Ma for the biotite-muscovite granite, 82.3 + 0.8/-1.1 Ma for the hornblende-biotite granite, 79.1 + 2.1/-1.5 Ma for the granite porphyry dyke, 75.0 + 1.0/-1.0 Ma for the alkali feldspar dyke, and 73.6 +/- 0.4 Ma for the monzonite. This is interpreted as continuous magma generation, possibly from heterogeneous sources, from ca. 84 to 74 Ma during the closure of the northern branch of the Neotethyan Ocean. The oldest granitoids (84-82 Ma) were probably formed due to crustal thickening after obduction of the MORB-type oceanic crust onto the Tauride-Anatolide microplate. The younger granitoids are interpreted to be related to the subsequent post-collisional extension after lithospheric delamination. Combination of the laser ablation ICP-MS zircon Lu-Hf isotope data with the U-Pb ages of inherited cores suggests that Cretaceous granitoids formed by melting of heterogeneous crustal protoliths, which results in significant variation in epsilon Hf-(t) data (from -12.9 to +2.2). These protoliths were probably composed of reworked Early Proterozoic crust, minor juvenile Late Proterozoic magmatic components, and Paleozoic to pre-Late Cretaceous recycled crustal material. Moreover, the Late Cretaceous zircon domains of the different granitoids are characterized by a crustal signature, with a relatively restricted zircon epsilon Hf-(t) data ranging from -4.1 to -8.8. This variation is only about twice the reproducibility (ca. +/- 1 epsilon Hf) of the data, bu
    corecore