16 research outputs found
Recommended from our members
Risk Reduction Through Use of External Technical Reviews, Technology Readiness Assessments and Technical Risk Ratings - 9174
The U.S. Department of Energy's Office of Environmental Management (DOE-EM) was established to achieve the safe and compliant disposition of legacy wastes and facilities from defense nuclear applications. A large majority of these wastes and facilities are 'one-of-a-kind' and unique to DOE. Many of the programs to treat these wastes have been 'first-of-a-kind' and unprecedented in scope and complexity. This has meant that many of the technologies needed to successfully disposition these wastes were not yet developed or required significant re-engineering to be adapted for DOE-EM's needs. The DOE-EM program believes strongly in reducing the technical risk of its projects and has initiated several efforts to reduce those risks: (1) Technology Readiness Assessments to reduce the risks of deployment of new technologies; (2) External Technical Reviews as one of several steps to ensure the timely resolution of engineering and technology issues; and (3) Technical Risk Ratings as a means to monitor and communicate information about technical risks. This paper will present examples of how Technology Readiness Assessments, External Technical Reviews, and Technical Risk Ratings are being used by DOE-EM to reduce technical risks
Recommended from our members
Risk Reduction Through Use of External Technical Reviews, Technology Readiness Assessments and Technical Risk Ratings - 9174
The U.S. Department of Energy's Office of Environmental Management (DOE-EM) was established to achieve the safe and compliant disposition of legacy wastes and facilities from defense nuclear applications. A large majority of these wastes and facilities are 'one-of-a-kind' and unique to DOE. Many of the programs to treat these wastes have been 'first-of-a-kind' and unprecedented in scope and complexity. This has meant that many of the technologies needed to successfully disposition these wastes were not yet developed or required significant re-engineering to be adapted for DOE-EM's needs. The DOE-EM program believes strongly in reducing the technical risk of its projects and has initiated several efforts to reduce those risks: (1) Technology Readiness Assessments to reduce the risks of deployment of new technologies; (2) External Technical Reviews as one of several steps to ensure the timely resolution of engineering and technology issues; and (3) Technical Risk Ratings as a means to monitor and communicate information about technical risks. This paper will present examples of how Technology Readiness Assessments, External Technical Reviews, and Technical Risk Ratings are being used by DOE-EM to reduce technical risks
Recommended from our members
CURRENT PROGRESS AND FUTURE PLANS FOR THE DOE OFFICE OF ENVIRONMENTAL MANAGEMENT INTERNATIONAL PROGRAM
The U.S. Department of Energy's (DOE) Office of Environmental Management (EM) has collaborated with various international institutes for many years on radioactive waste management challenges of mutual concern. Currently, DOE-EM is performing collaborative work with researchers at the Khlopin Radium Institute and the SIA Radon Institute in Russia and the Ukraine's International Radioecology Laboratory to explore issues related to high-level waste and to investigate experience and technologies that could support DOE-EM site cleanup needs. Specific initiatives include: (1) Application of the Cold Crucible Induction Heated Melter to DOE Wastes--SIA Radon and Savannah River National Laboratory; (2) Improved Solubility and Retention of Troublesome Components in SRS and Hanford Waste Glasses--Khlopin Radium Institute, Pacific Northwest National Laboratory and Savannah River National Laboratory; and (3) Long-term Impacts from Radiation/Contamination within the Chernobyl Exclusion Zone--International Radioecology Laboratory and Savannah River National Laboratory. This paper provides an overview of the status of the current International Program task activities. The paper will also provide insight into the future direction for the program. Specific ties to the current DOE-EM technology development multi-year planning effort will be highlighted as well as opportunities for future international collaborations
Scientific Opportunities for Monitoring at Environmental Remediation Sites (SOMERS): Integrated Systems-Based Approaches to Monitoring
Through an inter-disciplinary effort, DOE is addressing a need to advance monitoring approaches from sole reliance on cost- and labor-intensive point-source monitoring to integrated systems-based approaches such as flux-based approaches and the use of early indicator parameters. Key objectives include identifying current scientific, technical and implementation opportunities and challenges, prioritizing science and technology strategies to meet current needs within the DOE complex for the most challenging environments, and developing an integrated and risk-informed monitoring framework
Scientific Opportunities for Monitoring of Environmental Remediation Sites (SOMERS) - 12224
ABSTRACT The US Department of Energy (DOE) is responsible for risk reduction and cleanup of its nuclear weapons complex. DOE maintains the largest cleanup program in the world, currently spanning over a million acres in 13 states. The inventory of contaminated materials includes 90 million gallons of radioactive waste, 6.4 trillion liters of groundwater, and 40 million cubic meters of soil and debris. It is not feasible to completely restore many sites to predisposal conditions. Any contamination left in place will require monitoring, engineering controls and/or land use restrictions to protect human health and environment. Research and development efforts to date have focused on improving characterization and remediation. Yet, monitoring will result in the largest life-cycle costs and will be critical to improving performance and protection. Through an inter-disciplinary effort, DOE is addressing a need to advance monitoring approaches from sole reliance on cost-and labor-intensive point-source monitoring to integrated systems-based approaches such as flux-based approaches and the use of early indicator parameters. Key objectives include identifying current scientific, technical and implementation opportunities and challenges, prioritizing science and technology strategies to meet current needs within the DOE complex for the most challenging environments, and developing an integrated and risk-informed monitoring framework
Recommended from our members
Scientific Opportunities for Monitoring at Environmental Remediation Sites (SOMERS): Integrated Systems-Based Approaches to Monitoring
Through an inter-disciplinary effort, DOE is addressing a need to advance monitoring approaches from sole reliance on cost- and labor-intensive point-source monitoring to integrated systems-based approaches such as flux-based approaches and the use of early indicator parameters. Key objectives include identifying current scientific, technical and implementation opportunities and challenges, prioritizing science and technology strategies to meet current needs within the DOE complex for the most challenging environments, and developing an integrated and risk-informed monitoring framework
Crustal homogenization revealed by U–Pb zircon ages and Hf isotope evidence from the Late Cretaceous granitoids of the Agaçören intrusive suite (Central Anatolia/Turkey)
Geochemical and isotopic evidence from the Agacoren Igneous Association in central Anatolia-Turkey indicates that this suite of calc-alkaline granitic rocks have undergone crustal homogenization during regional metamorphic and related magmatic events. Whole-rock chemical and Sr-Nd isotopic data of the granitoids reveal crustal affinity with an earlier subduction component. Zircons show inherited cores and subsequent magmatic overgrowths. The laser ablation ICP-MS Pb-206/U-238 zircon ages are determined as 84.1 +/- 1.0 Ma for the biotite-muscovite granite, 82.3 + 0.8/-1.1 Ma for the hornblende-biotite granite, 79.1 + 2.1/-1.5 Ma for the granite porphyry dyke, 75.0 + 1.0/-1.0 Ma for the alkali feldspar dyke, and 73.6 +/- 0.4 Ma for the monzonite. This is interpreted as continuous magma generation, possibly from heterogeneous sources, from ca. 84 to 74 Ma during the closure of the northern branch of the Neotethyan Ocean. The oldest granitoids (84-82 Ma) were probably formed due to crustal thickening after obduction of the MORB-type oceanic crust onto the Tauride-Anatolide microplate. The younger granitoids are interpreted to be related to the subsequent post-collisional extension after lithospheric delamination. Combination of the laser ablation ICP-MS zircon Lu-Hf isotope data with the U-Pb ages of inherited cores suggests that Cretaceous granitoids formed by melting of heterogeneous crustal protoliths, which results in significant variation in epsilon Hf-(t) data (from -12.9 to +2.2). These protoliths were probably composed of reworked Early Proterozoic crust, minor juvenile Late Proterozoic magmatic components, and Paleozoic to pre-Late Cretaceous recycled crustal material. Moreover, the Late Cretaceous zircon domains of the different granitoids are characterized by a crustal signature, with a relatively restricted zircon epsilon Hf-(t) data ranging from -4.1 to -8.8. This variation is only about twice the reproducibility (ca. +/- 1 epsilon Hf) of the data, bu