7 research outputs found

    The Repeatability of Adaptive Radiation During Long-Term Experimental Evolution of Escherichia coli in a Multiple Nutrient Environment

    Get PDF
    Adaptive radiations occur when a species diversifies into different ecological specialists due to competition for resources and trade-offs associated with the specialization. The evolutionary outcome of an instance of adaptive radiation cannot generally be predicted because chance (stochastic events) and necessity (deterministic events) contribute to the evolution of diversity. With increasing contributions of chance, the degree of parallelism among different instances of adaptive radiations and the predictability of an outcome will decrease. To assess the relative contributions of chance and necessity during adaptive radiation, we performed a selection experiment by evolving twelve independent microcosms of Escherichia coli for 1000 generations in an environment that contained two distinct resources. Specialization to either of these resources involves strong trade-offs in the ability to use the other resource. After selection, we measured three phenotypic traits: 1) fitness, 2) mean colony size, and 3) colony size diversity. We used fitness relative to the ancestor as a measure of adaptation to the selective environment; changes in colony size as a measure of the evolution of new resource specialists because colony size has been shown to correlate with resource specialization; and colony size diversity as a measure of the evolved ecological diversity. Resource competition led to the rapid evolution of phenotypic diversity within microcosms. Measurements of fitness, colony size, and colony size diversity within and among microcosms showed that the repeatability of adaptive radiation was high, despite the evolution of genetic variation within microcosms. Consistent with the observation of parallel evolution, we show that the relative contributions of chance are far smaller and less important than effects due to adaptation for the traits investigated. The two-resource environment imposed similar selection pressures in independent populations and promoted parallel phenotypic adaptive radiations in all independently evolved microcosms

    Study protocol for a phase 2A trial of the safety and tolerability of increased dose rifampicin and adjunctive linezolid, with or without aspirin, for HIV-associated tuberculous meningitis [LASER-TBM] [version 1; peer review: 2 approved]

    Get PDF
    Background: Tuberculous meningitis (TBM) is the most lethal form of tuberculosis with a mortality of ~50% in those co-infected with HIV-1. Current antibiotic regimens are based on those known to be effective in pulmonary TB and do not account for the differing ability of the drugs to penetrate the central nervous system (CNS). The host immune response drives pathology in TBM, yet effective host-directed therapies are scarce. There is sufficient data to suggest that higher doses of rifampicin (RIF), additional linezolid (LZD) and adjunctive aspirin (ASA) will be beneficial in TBM yet rigorous investigation of the safety of these interventions in the context of HIV associated TBM is required. We hypothesise that increased dose RIF, LZD and ASA used in combination and in addition to standard of care for the first 56 days of treatment with be safe and tolerated in HIV-1 infected people with TBM. Methods: In an open-label randomised parallel study, up to 100 participants will receive either; i) standard of care (n=40, control arm), ii) standard of care plus increased dose RIF (35mg/kg) and LZD (1200mg OD for 28 days, 600mg OD for 28 days) (n=30, experimental arm 1), or iii) as per experimental arm 1 plus additional ASA 1000mg OD (n=30, experimental arm 2). After 56 days participants will continue standard treatment as per national guidelines. The primary endpoint is death and the occurrence of solicited treatment-related adverse events at 56 days. In a planned pharmacokinetic (PK) sub-study we aim to assess PK/pharmacodynamic (PD) of oral vs IV rifampicin, describe LZD and RIF PK and cerebrospinal fluid concentrations, explore PK/PD relationships, and investigate drug-drug interactions between LZD and RIF. Safety and pharmacokinetic data from this study will inform a planned phase III study of intensified therapy in TBM. Clinicaltrials.gov registration: NCT03927313 (25/04/2019

    Bibliography

    No full text
    corecore