2 research outputs found

    The Protozoan Inhibitor Atovaquone Affects Mitochondrial Respiration and Shows In Vitro Efficacy Against Glucocorticoid-Resistant Cells in Childhood B-Cell Acute Lymphoblastic Leukaemia.

    Get PDF
    Childhood acute lymphoblastic leukaemia (cALL) accounts for about one third of all paediatric malignancies making it the most common cancer in children. Alterations in tumour cell metabolism were first described nearly a century ago and have been acknowledged as one of the key characteristics of cancers including cALL. Two of the backbone chemotherapeutic agents in the treatment of this disease, Glucocorticoids and L-asparaginase, are exerting their anti-leukaemic effects through targeting cell metabolism. Even though risk stratification and treatment regimens have improved cure rates to nearly 90%, prognosis for relapsed children remains poor. Therefore, new therapeutic approaches are urgently required. Atovaquone is a well-tolerated drug used in the clinic mainly against malaria. Being a ubiquinone analogue, this drug inhibits co-enzyme Q10 of the electron transport chain (ETC) affecting oxidative phosphorylation and cell metabolism. In this study we tested the effect of Atovaquone on cALL cells . Pharmacologically relevant concentrations of the inhibitor could effectively target mitochondrial respiration in both cALL cell lines (REH and Sup-B15) and primary patient samples. We found that Atovaquone leads to a marked decrease in basal respiration and ATP levels, as well as reduced proliferation, cell cycle arrest, and induction of apoptosis. Importantly, we observed an enhanced anti-leukaemic effect when Atovaquone was combined with the standard chemotherapeutic Idarubicin, or with Prednisolone in an model of Glucocorticoid resistance. Repurposing of this clinically approved inhibitor renders further investigations, but also presents opportunities for fast-track trials as a single agent or in combination with standard chemotherapeutics. [Abstract copyright: Copyright © 2021 Sbirkov, Ivanova, Burnusuzov, Gercheva, Petrie, Schenk and Sarafian.

    A study of flavonoid composition and antimicrobial activity of Scutellaria altissima L. from different floristic regions of Bulgaria

    No full text
    Introduction: Scutellaria extracts and its constituents, especially the characteristic flavonoids such as baicalein and its glycoside baicalin, exhibit significant antimicrobial activity. Aim: To perform a comparative analysis of flavonoid composition and antimicrobial activity of extracts obtained from aerial parts and roots of Scutellaria altissima from the regions of Mezek and Bachkovo, Bulgaria. Materials and methods: 70% ethanol and aqueous extracts of aerial parts and roots of S. altissima were used. HPLC analysis of S. altissima extracts was performed. Microbiological tests were done on clinical isolates of Streptococcus mitis, Staphylococcus aureus, Escherichia coli, and Candida albicans. Minimal bactericidal and minimal bacteriostatic concentrations of S. altissima extracts were determined by the agar method. Results: The ethanol extracts contain flavonoids approximately twice as much in comparison with the aqueous extracts. The baicalin content in the aerial parts of S. altissima from the region of Mezek is 5 times higher than that in the roots. S. altissima extracts have effective antimicrobial activity against S. mitis only. The minimal bactericidal concentration of ethanol extracts of S. altissima aerial parts and S. altissima roots is 2000 µg/ml and 8000 µg/ml at 24 hours, respectively. The bactericidal effect of aqueous extracts occurs at 48 hours at minimal bactericidal concentration of S. altissima aerial parts – 2000 µg/ml and of S. altissima roots – 6000 µg/ml. Conclusions: The finding that extracts of Bulgarian S. altissima possess effective antimicrobial properties against S. mitis suggests that it can be used as a potential source for the development of natural antimicrobial agents to suppress oral pathogens and prevent some oral infections
    corecore