547 research outputs found

    A General Transfer-Function Approach to Noise Filtering in Open-Loop Quantum Control

    Get PDF
    We present a general transfer-function approach to noise filtering in open-loop Hamiltonian engineering protocols for open quantum systems. We show how to identify a computationally tractable set of fundamental filter functions, out of which arbitrary transfer filter functions may be assembled up to arbitrary high order in principle. Besides avoiding the infinite recursive hierarchy of filter functions that arises in general control scenarios, this fundamental filter-functions set suffices to characterize the error suppression capabilities of the control protocol in both the time and frequency domain. We prove that the resulting notion of filtering order reveals conceptually distinct, albeit complementary, features of the controlled dynamics as compared to the order of error cancellation, traditionally defined in the Magnus sense. Examples and implications are discussed.Comment: Paper plus supplementary material. 10 pages, 1 figure. Unnumbered equation between 2 and 3 corrected. Results are unchange

    Total correlations as fully additive entanglement monotones

    Full text link
    We generalize the strategy presented in Refs. [1, 2], and propose general conditions for a measure of total correlations to be an entanglement monotone using its pure (and mixed) convex-roof extension. In so doing, we derive crucial theorems and propose a concrete candidate for a total correlations measure which is a fully additive entanglement monotone.Comment: 8 pages, 3 figures. Title changed, new result

    On the dynamics of initially correlated open quantum systems: theory and applications

    Full text link
    We show that the dynamics of any open quantum system that is initially correlated with its environment can be described by a set of (or less) completely positive maps, where d is the dimension of the system. Only one such map is required for the special case of no initial correlations. The same maps describe the dynamics of any system-environment state obtained from the initial state by a local operation on the system. The reduction of the system dynamics to a set of completely positive maps allows known numerical and analytic tools for uncorrelated initial states to be applied to the general case of initially correlated states, which we exemplify by solving the qubit dephasing model for such states, and provides a natural approach to quantum Markovianity for this case. We show that this set of completely positive maps can be experimentally characterised using only local operations on the system, via a generalisation of noise spectroscopy protocols. As further applications, we first consider the problem of retrodicting the dynamics of an open quantum system which is in an arbitrary state when it becomes accessible to the experimenter, and explore the conditions under which retrodiction is possible. We also introduce a related one-sided or limited-access tomography protocol for determining an arbitrary bipartite state, evolving under a sufficiently rich Hamiltonian, via local operations and measurements on just one component. We simulate this protocol for a physical model of particular relevance to nitrogen-vacancy centres, and in particular show how to reconstruct the density matrix of a set of three qubits, interacting via dipolar coupling and in the presence of local magnetic fields, by measuring and controlling only one of them.Comment: 19 pages. Comments welcom

    Noise Detection with Spectator Qubits and Quantum Feature Engineering

    Full text link
    Designing optimal control pulses that drive a noisy qubit to a target state is a challenging and crucial task for quantum engineering. In a situation where the properties of the quantum noise affecting the system are dynamic, a periodic characterization procedure is essential to ensure the models are updated. As a result, the operation of the qubit is disrupted frequently. In this paper, we propose a protocol that addresses this challenge by making use of a spectator qubit to monitor the noise in real-time. We develop a quantum machine-learning-based quantum feature engineering approach for designing the protocol. The complexity of the protocol is front-loaded in a characterization phase, which allow real-time execution during the quantum computations. We present the results of numerical simulations that showcase the favorable performance of the protocol.Comment: The source code, datasets, and trained models that were used to generate the results in this paper are publicly available at https://github.com/akramyoussry/QFEN

    Resource-efficient digital characterization and control of classical non-Gaussian noise

    Full text link
    We show the usefulness of frame-based characterization and control [PRX Quantum 2, 030315 (2021)] for non-Markovian open quantum systems subject to classical non-Gaussian dephasing. By focusing on the paradigmatic case of random telegraph noise and working in a digital window frame, we demonstrate how to achieve higher-order control-adapted spectral estimation for noise-optimized dynamical decoupling design. We find that, depending on the operating parameter regime, control that is optimized based on non-Gaussian noise spectroscopy can substantially outperform standard Walsh decoupling sequences as well as sequences that are optimized based solely on Gaussian noise spectroscopy. This approach is also intrinsically more resource-efficient than frequency-domain comb-based methods

    Globally controlled universal quantum computation with arbitrary subsystem dimension

    Full text link
    We introduce a scheme to perform universal quantum computation in quantum cellular automata (QCA) fashion in arbitrary subsystem dimension (not necessarily finite). The scheme is developed over a one spatial dimension NN-element array, requiring only mirror symmetric logical encoding and global pulses. A mechanism using ancillary degrees of freedom for subsystem specific measurement is also presented.Comment: 7 pages, 1 figur
    • …
    corecore