133 research outputs found

    Individualized dosing of evinacumab is predicted to yield reductions in drug expenses

    Get PDF
    Background: Evinacumab is a first-in-class inhibitor of angiopoietin‐like protein 3 (ANGPTL3) for treatment of the rare disease homozygous familial hypercholesterolemia (HoFH). With projected drug costs of $450,000 per person per year, the question rises if cost-efficacy of evinacumab can be further improved. Objectives: To develop an individualized dosing regimen te reduce drug expenses. Methods: Using the clinical and pharmacological data as provided by the license holder, we developed an alternative dosing regimen in silico based on the principles of reduction of wastage by dosing based on weight bands rather than a linear milligram per kilogram body weight (mg/kg) dosing regimen, as well as dose individualization guided by low density lipoprotein cholesterol (LDL-C) response. Results: We found that the average quantity of drug used for a dose could be reduced by 34% without predicted loss in efficacy (LDL-C reduction 24 weeks after treatment initiation). Conclusion: Dose reductions without compromising efficacy seem feasible. We call for implementation and prospective evaluation of this strategy to reduce treatment costs of HoFH.</p

    Diannexin Protects against Renal Ischemia Reperfusion Injury and Targets Phosphatidylserines in Ischemic Tissue

    Get PDF
    Renal ischemia/reperfusion injury (IRI) frequently complicates shock, renal transplantation and cardiac and aortic surgery, and has prognostic significance. The translocation of phosphatidylserines to cell surfaces is an important pro-inflammatory signal for cell-stress after IRI. We hypothesized that shielding of exposed phosphatidylserines by the annexin A5 (ANXA5) homodimer Diannexin protects against renal IRI. Protective effects of Diannexin on the kidney were studied in a mouse model of mild renal IRI. Diannexin treatment before renal IRI decreased proximal tubule damage and leukocyte influx, decreased transcription and expression of renal injury markers Neutrophil Gelatinase Associated Lipocalin and Kidney Injury Molecule-1 and improved renal function. A mouse model of ischemic hind limb exercise was used to assess Diannexin biodistribution and targeting. When comparing its biodistribution and elimination to ANXA5, Diannexin was found to have a distinct distribution pattern and longer blood half-life. Diannexin targeted specifically to the ischemic muscle and its affinity exceeded that of ANXA5. Targeting of both proteins was inhibited by pre-treatment with unlabeled ANXA5, suggesting that Diannexin targets specifically to ischemic tissues via phosphatidylserine-binding. This study emphasizes the importance of phosphatidylserine translocation in the pathophysiology of IRI. We show for the first time that Diannexin protects against renal IRI, making it a promising therapeutic tool to prevent IRI in a clinical setting. Our results indicate that Diannexin is a potential new imaging agent for the study of phosphatidylserine-exposing organs in vivo

    Allopurinol to reduce cardiovascular morbidity and mortality: A systematic review and meta-analysis

    Get PDF
    Aims To compare the effectiveness of allopurinol with no treatment or placebo for the prevention of cardiovascular events in hyperuricemic patients. Methods and results Pubmed, Web of Science and Cochrane library were searched from inception until July 2020. Randomized controlled trials (RCT) and observational studies in hyperuricemic patients without significant renal disease and treated with allopurinol, versus placebo or no treatment were included. Outcome measures were cardiovascular mortality, myocardial infarction, stroke, or a combined endpoint (CM/MI/S). For RCT’s a random effects meta-analysis was performed. For observational studies a narrative synthesis was performed. Of the original 1995 references we ultimately included 26 RCT’s and 21 observational studies. We found a significantly reduced risk of combined endpoint (Risk Ratio 0.65 [95% CI] [0.46 to 0.91]; p = 0.012) and myocardial infarction (RR 0.47 [0.27 to 0.80]; p = 0.01) in the allopurinol group compared to controls. We found no significant effect of allopurinol on stroke or cardiovascular mortality. Of the 15 observational studies with sufficient quality, allopurinol was associated with reduced cardiovascular mortality in 1 out of 3 studies that reported this outcome, myocardial infarction in 6 out of 8, stroke in 4 out of 7, and combined end-point in 2 out of 2. Cardiovascular benefit was only observed when allopurinol therapy was prolonged for more than 6 months and when an appropriate allopurinol dose was administered (300 mg or more/day) or sufficient reduction of serum urate concentration was achieved (<0.36 mmol/l). Conclusions Data from RCT’s and observational studies indicate that allopurinol treatment reduces cardiovascular risk in patients with hyperuricemia. However, the quality of evidence from RCTs is low to moderate. To establish whether allopurinol lowers the risk of cardiovascular events a well-designed and adequately powered randomized, placebo-controlled trial is needed in high-risk patients with hyperuricemia. Systematic review registration PROSPERO registration CRD4201808974

    Impact of lifelong exercise training on endothelial ischemia-reperfusion and ischemic preconditioning in humans.

    Get PDF
    Reperfusion is essential for ischemic tissue survival, but causes additional damage to the endothelium (i.e. ischemia-reperfusion [IR] injury). Ischemic preconditioning (IPC) refers to short repetitive episodes of ischemia that can protect against IR. However, IPC efficacy attenuates with older age. Whether physical inactivity contributes to the attenuated efficacy of IPC to protect against IR injury in older humans is unclear. We tested the hypotheses that lifelong exercise training relates to 1) attenuated endothelial IR and 2) maintained IPC efficacy that protects veteran athletes against endothelial IR. In 18 sedentary male individuals (SED, 20 years, 63±7 years) and 20 veteran male athletes (ATH, >5 exercise hours/week for >20 years, 63±6 years), we measured brachial artery endothelial function with flow-mediated dilation (FMD) before and after IR. We induced IR by 20-minutes of ischemia followed by 20-minutes of reperfusion. Randomized over 2 days, participants underwent either 35-minute rest or IPC (3 cycles of 5-minutes cuff inflation to 220 mmHg with 5-minutes of rest) before IR. In SED, FMD decreased after IR (median [interquartile range]): (3.0% [2.0-4.7] to 2.1% [1.5-3.9], P=0.046) and IPC did not prevent this decline (4.1% [2.6-5.2] to 2.8% [2.2-3.6],P=0.012). In ATH, FMD was preserved after IR (3.0% [1.7-5.4] to 3.0% [1.9-4.1], P=0.82) and when IPC preceded IR (3.2% [1.9-4.2] to 2.8% [1.4-4.6],P=0.18). These findings indicate that lifelong exercise training is associated with increased tolerance against endothelial IR. These protective, preconditioning effects of lifelong exercise against endothelial ischemia-reperfusion may contribute to the cardio-protective effects of exercise training

    Correction:Dutch Pharmacogenetics Working Group (DPWG) guideline for the gene–drug interaction between CYP2D6 and opioids (codeine, tramadol and oxycodone) (European Journal of Human Genetics, (2021), 10.1038/s41431-021-00920-y)

    Get PDF
    The Data statement was partly wrong and should have read as below. DATA AVAILABILITY All data and material are either included in the Supplementary information or publicly available (i.e., the published articles, PubMed). The guidelines and background information are available on the website of the Royal Dutch Pharmacists Association (KNMP) (Pharmacogenetic Recommendations. Available from: https://www.knmp.nl/). The guidelines and background information will be available on PharmGKB.org

    Dutch Pharmacogenetics Working Group (DPWG) guideline for the gene-drug interaction of DPYD and fluoropyrimidines

    Get PDF
    Despite advances in the field of pharmacogenetics (PGx), clinical acceptance has remained limited. The Dutch Pharmacogenetics Working Group (DPWG) aims to facilitate PGx implementation by developing evidence-based pharmacogenetics guidelines to optimize pharmacotherapy. This guideline describes the starting dose optimization of three anti-cancer drugs (fluoropyrimidines: 5-fluorouracil, capecitabine and tegafur) to decrease the risk of severe, potentially fatal, toxicity (such as diarrhoea, hand-foot syndrome, mucositis or myelosuppression). Dihydropyrimidine dehydrogenase (DPD, encoded by the DPYD gene) enzyme deficiency increases risk of fluoropyrimidine-induced toxicity. The DPYD-gene activity score, determined by four DPYD variants, predicts DPD activity and can be used to optimize an individual's starting dose. The gene activity score ranges from 0 (no DPD activity) to 2 (normal DPD activity). In case it is not possible to calculate the gene activity score based on DPYD genotype, we recommend to determine the DPD activity and adjust the initial dose based on available data. For patients initiating 5-fluorouracil or capecitabine: subjects with a gene activity score of 0 are recommended to avoid systemic and cutaneous 5-fluorouracil or capecitabine; subjects with a gene activity score of 1 or 1.5 are recommended to initiate therapy with 50% the standard dose of 5-fluorouracil or capecitabine. For subjects initiating tegafur: subjects with a gene activity score of 0, 1 or 1.5 are recommended to avoid tegafur. Subjects with a gene activity score of 2 (reference) should receive a standard dose. Based on the DPWG clinical implication score, DPYD genotyping is considered "essential", therefore directing DPYD testing prior to initiating fluoropyrimidines

    Leg blood flow measurements using venous occlusion plethysmography during head-up tilt

    Get PDF
    We tested whether venous occlusion plethysmography (VOP) is an appropriate method to measure calf blood flow (CBF) during head-up tilt (HUT). CBF measured with VOP was compared with superficial femoral artery blood flow as measured by Doppler ultrasound during incremental tilt angles. Measurements of both methods correlated well (r = 0.86). Reproducibility of VOP was fair in supine position and 30° HUT (CV: 11%–15%). This indicates that VOP is an applicable tool to measure leg blood flow during HUT, especially up to 30° HUT

    Ischemic Preconditioning in the Animal Kidney, a Systematic Review and Meta-Analysis

    Get PDF
    Ischemic preconditioning (IPC) is a potent renoprotective strategy which has not yet been translated successfully into clinical practice, in spite of promising results in animal studies. We performed a unique systematic review and meta-analysis of animal studies to identify factors modifying IPC efficacy in renal ischemia/reperfusion injury (IRI), in order to enhance the design of future (clinical) studies. An electronic literature search for animal studies on IPC in renal IRI yielded fifty-eight studies which met our inclusion criteria. We extracted data for serum creatinine, blood urea nitrogen and histological renal damage, as well as study quality indicators. Meta-analysis showed that IPC reduces serum creatinine (SMD 1.54 [95%CI 1.16, 1.93]), blood urea nitrogen (SMD 1.42 [95% CI 0.97, 1.87]) and histological renal damage (SMD 1.12 [95% CI 0.89, 1.35]) after IRI as compared to controls. Factors influencing IPC efficacy were the window of protection (<24 h = early vs. ≥24 h = late) and animal species (rat vs. mouse). No difference in efficacy between local and remote IPC was observed. In conclusion, our findings show that IPC effectively reduces renal damage after IRI, with higher efficacy in the late window of protection. However, there is a large gap in study data concerning the optimal window of protection, and IPC efficacy may differ per animal species. Moreover, current clinical trials on RIPC may not be optimally designed, and our findings identify a need for further standardization of animal experiments

    Dutch Pharmacogenetics Working Group (DPWG) guideline for the gene-drug interaction between CYP2D6, CYP3A4 and CYP1A2 and antipsychotics

    Get PDF
    The Dutch Pharmacogenetics Working Group (DPWG) aims to facilitate pharmacogenetics implementation in clinical practice by developing evidence-based guidelines to optimize pharmacotherapy. A guideline describing the gene-drug interaction between the genes CYP2D6, CYP3A4 and CYP1A2 and antipsychotics is presented here. The DPWG identified gene-drug interactions that require therapy adjustments when respective genotype is known for CYP2D6 with aripiprazole, brexpiprazole, haloperidol, pimozide, risperidone and zuclopenthixol, and for CYP3A4 with quetiapine. Evidence-based dose recommendations were obtained based on a systematic review of published literature. Reduction of the normal dose is recommended for aripiprazole, brexpiprazole, haloperidol, pimozide, risperidone and zuclopenthixol for CYP2D6-predicted PMs, and for pimozide and zuclopenthixol also for CYP2D6 IMs. For CYP2D6 UMs, a dose increase or an alternative drug is recommended for haloperidol and an alternative drug or titration of the dose for risperidone. In addition, in case of no or limited clinical effect, a dose increase is recommended for zuclopenthixol for CYP2D6 UMs. Even though evidence is limited, the DPWG recommends choosing an alternative drug to treat symptoms of depression or a dose reduction for other indications for quetiapine and CYP3A4 PMs. No therapy adjustments are recommended for the other CYP2D6 and CYP3A4 predicted phenotypes. In addition, no action is required for the gene-drug combinations CYP2D6 and clozapine, flupentixol, olanzapine or quetiapine and also not for CYP1A2 and clozapine or olanzapine. For identified gene-drug interactions requiring therapy adjustments, genotyping of CYP2D6 or CYP3A4 prior to treatment should not be considered for all patients, but on an individual patient basis only
    corecore