79 research outputs found
Can machine learning models provide accurate fertilizer recommendations?
Accurate modeling of site-specific crop yield response is key to providing farmers with accurate site-specific economically optimal input rates (EOIRs) recommendations. Many studies have demonstrated that machine learning models can accurately predict yield. These models have also been used to analyze the effect of fertilizer application rates on yield and derive EOIRs. But models with accurate yield prediction can still provide highly inaccurate input application recommendations. This study quantified the uncertainty generated when using machine learning methods to model the effect of fertilizer application on site-specific crop yield response. The study uses real on-farm precision experimental data to evaluate the influence of the choice of machine learning algorithms and covariate selection on yield and EOIR prediction. The crop is winter wheat, and the inputs considered are a slow-release basal fertilizer NPK 25–6–4 and a top-dressed fertilizer NPK 17–0–17. Random forest, XGBoost, support vector regression, and artificial neural network algorithms were trained with 255 sets of covariates derived from combining eight different soil properties. Results indicate that both the predicted EOIRs and associated gained profits are highly sensitive to the choice of machine learning algorithm and covariate selection. The coefficients of variation of EOIRs derived from all possible combinations of covariate selection ranged from 13.3 to 31.5% for basal fertilization and from 14.2 to 30.5% for top-dressing. These findings indicate that while machine learning can be useful for predicting site-specific crop yield levels, it must be used with caution in making fertilizer application rate recommendations
Mapping trends in water table depths in a brazilian cerrado area
Abstract The Cerrado region is the most extensive woodland-savanna
Mapping rootable depth and root zone plant-available water holding capacity of the soil of sub-Saharan Africa
In rainfed crop production, root zone plant-available water holding capacity (RZ-PAWHC) of the soil has a large influence on crop growth and the yield response to management inputs such as improved seeds and fertilisers. However, data are lacking for this parameter in sub-Saharan Africa (SSA). This study produced the first spatially explicit, coherent and complete maps of the rootable depth and RZ-PAWHC of soil in SSA. We compiled georeferenced data from 28,000 soil profiles from SSA, which were used as input for digital soil mapping (DSM) techniques to produce soil property maps of SSA. Based on these soil properties, we developed and parameterised (pedotransfer) functions, rules and criteria to evaluate soil water retention at field capacity and wilting point, the soil fine earth fraction from coarse fragments content and, for maize, the soil rootability (relative to threshold values) and rootable depth. Maps of these secondary soil properties were derived using the primary soil property maps as input for the evaluation rules and the results were aggregated over the rootable depth to obtain a map of RZ-PAWHC, with a spatial resolution of 1 km2. The mean RZ-PAWHC for SSA is 74mm and the associated average root zone depth is 96 cm. Pearson correlation between the two is 0.95. RZ-PAWHC proves most limited by the rootable depth but is also highly sensitive to the definition of field capacity. The total soil volume of SSA potentially rootable by maize is reduced by one third (over 10,500 km3) due to soil conditions restricting root zone depth. Of these, 4800 km3 are due to limited depth of aeration, which is the factor most severely limiting in terms of extent (km2), and 2500 km3 due to sodicity which is most severely limiting in terms of degree (depth in cm). Depth of soil to bedrock reduces the rootable soil volume by 2500 km3, aluminium toxicity by 600 km3, porosity by 120 km3 and alkalinity by 20 km3. The accuracy of the map of rootable depth and thus of RZ-PAWHC could not be validated quantitatively due to absent data on rootability and rootable depth but is limited by the accuracy of the primary soil property maps. The methodological framework is robust and has been operationalised such that the maps can easily be updated as additional data become available
Spatio-temporal interpolation of daily temperatures for global land areas at 1 km resolution
Combined Global Surface Summary of Day and European Climate Assessment and Dataset daily meteorological data sets (around 9000 stations) were used to build spatio-temporal geostatistical models and predict daily air temperature at ground resolution of 1km for the global land mass. Predictions in space and time were made for the mean, maximum, and minimum temperatures using spatio-temporal regression-kriging with a time series of Moderate Resolution Imaging Spectroradiometer (MODIS) 8 day images, topographic layers (digital elevation model and topographic wetness index), and a geometric temperature trend as covariates. The accuracy of predicting daily temperatures was assessed using leave-one-out cross validation. To account for geographical point clustering of station data and get a more representative cross-validation accuracy, predicted values were aggregated to blocks of land of size 500x500km. Results show that the average accuracy for predicting mean, maximum, and minimum daily temperatures is root-mean-square error (RMSE) =2 degrees C for areas densely covered with stations and between 2 degrees C and 4 degrees C for areas with lower station density. The lowest prediction accuracy was observed at high altitudes (>1000m) and in Antarctica with an RMSE around 6 degrees C. The model and predictions were built for the year 2011 only, but the same methodology could be extended for the whole range of the MODIS land surface temperature images (2001 to today), i.e., to produce global archives of daily temperatures (a next-generation repository) and to feed various global environmental models. Key Points Global spatio-temporal regression-kriging daily temperature interpolation Fitting of global spatio-temporal models for the mean, maximum, and minimum temperatures Time series of MODIS 8 day images as explanatory variables in regression par
SoilGrids1km — Global Soil Information Based on Automated Mapping
Background: Soils are widely recognized as a non-renewable natural resource and as biophysical carbon sinks. As such, there is a growing requirement for global soil information. Although several global soil information systems already exist, these tend to suffer from inconsistencies and limited spatial detail. Methodology/Principal Findings: We present SoilGrids1km — a global 3D soil information system at 1 km resolution — containing spatial predictions for a selection of soil properties (at six standard depths): soil organic carbon (g kg−1), soil pH, sand, silt and clay fractions (%), bulk density (kg m−3), cation-exchange capacity (cmol+/kg), coarse fragments (%), soil organic carbon stock (t ha−1), depth to bedrock (cm), World Reference Base soil groups, and USDA Soil Taxonomy suborders. Our predictions are based on global spatial prediction models which we fitted, per soil variable, using a compilation of major international soil profile databases (ca. 110,000 soil profiles), and a selection of ca. 75 global environmental covariates representing soil forming factors. Results of regression modeling indicate that the most useful covariates for modeling soils at the global scale are climatic and biomass indices (based on MODIS images), lithology, and taxonomic mapping units derived from conventional soil survey (Harmonized World Soil Database). Prediction accuracies assessed using 5–fold cross-validation were between 23–51%. Conclusions/Significance: SoilGrids1km provide an initial set of examples of soil spatial data for input into global models at a resolution and consistency not previously available. Some of the main limitations of the current version of SoilGrids1km are: (1) weak relationships between soil properties/classes and explanatory variables due to scale mismatches, (2) difficulty to obtain covariates that capture soil forming factors, (3) low sampling density and spatial clustering of soil profile locations. However, as the SoilGrids system is highly automated and flexible, increasingly accurate predictions can be generated as new input data become available. SoilGrids1km are available for download via http://soilgrids.org under a Creative Commons Non Commercial license
Optimization of sample patterns for universal kriging of environmental variables
Abstract The quality of maps obtained by interpolation of observations of a target environmental variable at a restricted number of locations, is partly determined by the spatial pattern of the sample locations. A method is presented for optimization of the sample pattern when the environmental variable is interpolated with the help of exhaustively known covariates, which are assumed to be linearly related to the target variable. In this method the spatially averaged universal kriging variance (MUKV), which incorporates trend estimation error as well as spatial interpolation error, is minimized. The optimal pattern is obtained using simulated annealing. The method requires that the covariance function or variogram of the regression-residuals is known. The method is tested in a case study on the Mean Highest Water table in a coversand area in The Netherlands. The patterns of 25, 50 and 100 sample locations are optimized and compared with the patterns optimized with the ordinary kriging (OK) model (assuming no trend) and with the multiple linear regression (MLR) model (assuming no spatial autocorrelation of residuals). The results show that the UK-patterns are a good compromise between spreading in geographic space and feature space. The MUKV for the UK-patterns is 19% (n = 25), 7% (n = 50) and 3% (n = 100) smaller than for the OK-patterns. Compared with the MLR-patterns the reduction is 2%, 4% and 4%, respectively
- …