72 research outputs found

    Ultra-cold mechanical resonators coupled to atoms in an optical lattice

    Full text link
    We propose an experiment utilizing an array of cooled micro-cantilevers coupled to a sample of ultra-cold atoms trapped near a micro-fabricated surface. The cantilevers allow individual lattice site addressing for atomic state control and readout, and potentially may be useful in optical lattice quantum computation schemes. Assuming resonators can be cooled to their vibrational ground state, the implementation of a two-qubit controlled-NOT gate with atomic internal states and the motional states of the resonator is described. We also consider a protocol for entangling two or more cantilevers on the atom chip with different resonance frequencies, using the trapped atoms as an intermediary. Although similar experiments could be carried out with magnetic microchip traps, the optical confinement scheme we consider may exhibit reduced near-field magnetic noise and decoherence. Prospects for using this novel system for tests of quantum mechanics at macroscopic scales or quantum information processing are discussed.Comment: 5 pages, 3 figure

    Zeptonewton force sensing with nanospheres in an optical lattice

    Full text link
    Optically trapped nanospheres in high-vaccum experience little friction and hence are promising for ultra-sensitive force detection. Here we demonstrate measurement times exceeding 10510^5 seconds and zeptonewton force sensitivity with laser-cooled silica nanospheres trapped in an optical lattice. The sensitivity achieved exceeds that of conventional room-temperature solid-state force sensors, and enables a variety of applications including electric field sensing, inertial sensing, and gravimetry. The optical potential allows the particle to be confined in a number of possible trapping sites, with precise localization at the anti-nodes of the optical standing wave. By studying the motion of a particle which has been moved to an adjacent trapping site, the known spacing of the lattice anti-nodes can be used to calibrate the displacement spectrum of the particle. Finally, we study the dependence of the trap stability and lifetime on the laser intensity and gas pressure, and examine the heating rate of the particle in high vacuum in the absence of optical feedback cooling.Comment: 5 pages, 4 figures, minor changes, typos corrected, references adde

    Sensing Short-Range Forces with a Nanosphere Matter-Wave Interferometer

    Full text link
    We describe a method for sensing short range forces using matter wave interference in dielectric nanospheres. When compared with atom interferometers, the larger mass of the nanosphere results in reduced wave packet expansion, enabling investigations of forces nearer to surfaces in a free-fall interferometer. By laser cooling a nanosphere to the ground state of an optical potential and releasing it by turning off the optical trap, acceleration sensing at the 10−810^{-8}m/s2^2 level is possible. The approach can yield improved sensitivity to Yukawa-type deviations from Newtonian gravity at the 55 μ\mum length scale by a factor of 10410^4 over current limits.Comment: 5 pages, 4 figure

    Detecting high-frequency gravitational waves with optically-levitated sensors

    Full text link
    We propose a tunable resonant sensor to detect gravitational waves in the frequency range of 50-300 kHz using optically trapped and cooled dielectric microspheres or micro-discs. The technique we describe can exceed the sensitivity of laser-based gravitational wave observatories in this frequency range, using an instrument of only a few percent of their size. Such a device extends the search volume for gravitational wave sources above 100 kHz by 1 to 3 orders of magnitude, and could detect monochromatic gravitational radiation from the annihilation of QCD axions in the cloud they form around stellar mass black holes within our galaxy due to the superradiance effect.Comment: 5 pages, 2 figures, 2 tables, submitted to PRL -- v2: GR calculation corrected, size of the signal and experimental geometry unaffected, cavity response included in sensitivity plot and LIGO sensitivity curves update

    Short-range force detection using optically-cooled levitated microspheres

    Full text link
    We propose an experiment using optically trapped and cooled dielectric microspheres for the detection of short-range forces. The center-of-mass motion of a microsphere trapped in vacuum can experience extremely low dissipation and quality factors of 101210^{12}, leading to yoctonewton force sensitivity. Trapping the sphere in an optical field enables positioning at less than 1 μ\mum from a surface, a regime where exotic new forces may exist. We expect that the proposed system could advance the search for non-Newtonian gravity forces via an enhanced sensitivity of 105−10710^5-10^7 over current experiments at the 1 μ\mum length scale. Moreover, our system may be useful for characterizing other short-range physics such as Casimir forces.Comment: 4 pages, 3 figures, minor changes, Figs. 1 and 2 replace
    • …
    corecore