1,135 research outputs found

    Comment on ``The linear instability of magnetic Taylor-Couette flow with Hall effect''

    Full text link
    In the paper we comment on (R\"udiger & Shalybkov, Phys. Rev. E. 69, 016303 (2004) (RS)), the instability of the Taylor--Couette flow interacting with a homogeneous background field subject to Hall effect is studied. We correct a falsely generalizing interpretation of results presented there which could be taken to disprove the existence of the Hall--drift induced magnetic instability described in Rheinhardt and Geppert, Phys. Rev. Lett. 88, 101103. It is shown that in contrast to what is suggested by RS, no additional shear flow is necessary to enable such an instability with a non--potential magnetic background field, whereas for a curl--free one it is. In the latter case, the instabilities found in RS in situations where neither a hydrodynamic nor a magneto--rotational instability exists are demonstrated to be most likely magnetic instead of magnetohydrodynamic. Further, some minor inaccuracies are clarified.Comment: 3 pages, 1 figure; accepted by Physical Review

    Improvement of the polarized neutron interferometer setup demonstrating violation of a Bell-like inequality

    Get PDF
    AbstractFor precise measurements with polarised neutrons high efficient spin-manipulation is required. We developed several neutron optical elements suitable for a new sophisticated setup, i.e., DC spin-turners and Larmor-accelerators which diminish thermal disturbances and depolarisation considerably. The gain in performance is exploited demonstrating violation of a Bell-like inequality for a spin-path entangled single-neutron state. The obtained value of S=2.365(13), which is much higher than previous measurements by neutron interferometry, is 28σ above the limit of S=2 predicted by contextual hidden variable theories. The new setup is more flexible referring to state preparation and analysis, therefore new, more precise measurements can be carried out

    Nanoparticle tracking analysis

    Get PDF
    Due to their extremely small size, nanoparticles cannot be analyses by conventional approaches such as light microscopy. To visualise particles in the nanoscale range, a combination of an ultra-microscope and a laser illumination unit has to be applied. This combinatory technique is called Nanoparticle Tracking Anlysis (NTA) and can be used of thr nalysis of particles in a size range of approximately 10 nm up to 1 μm in liquid suspension

    Turning Points in the Evolution of Isolated Neutron Stars' Magnetic Fields

    Get PDF
    During the life of isolated neutron stars (NSs) their magnetic field passes through a variety of evolutionary phases. Depending on its strength and structure and on the physical state of the NS (e.g. cooling, rotation), the field looks qualitatively and quantitatively different after each of these phases. Three of them, the phase of MHD instabilities immediately after NS's birth, the phase of fallback which may take place hours to months after NS's birth, and the phase when strong temperature gradients may drive thermoelectric instabilities, are concentrated in a period lasting from the end of the proto--NS phase until 100, perhaps 1000 years, when the NS has become almost isothermal. The further evolution of the magnetic field proceeds in general inconspicuous since the star is in isolation. However, as soon as the product of Larmor frequency and electron relaxation time, the so-called magnetization parameter, locally and/or temporally considerably exceeds unity, phases, also unstable ones, of dramatic changes of the field structure and magnitude can appear. An overview is given about that field evolution phases, the outcome of which makes a qualitative decision regarding the further evolution of the magnetic field and its host NS.Comment: References updated, typos correcte

    Reaction Networks For Interstellar Chemical Modelling: Improvements and Challenges

    Full text link
    We survey the current situation regarding chemical modelling of the synthesis of molecules in the interstellar medium. The present state of knowledge concerning the rate coefficients and their uncertainties for the major gas-phase processes -- ion-neutral reactions, neutral-neutral reactions, radiative association, and dissociative recombination -- is reviewed. Emphasis is placed on those reactions that have been identified, by sensitivity analyses, as 'crucial' in determining the predicted abundances of the species observed in the interstellar medium. These sensitivity analyses have been carried out for gas-phase models of three representative, molecule-rich, astronomical sources: the cold dense molecular clouds TMC-1 and L134N, and the expanding circumstellar envelope IRC +10216. Our review has led to the proposal of new values and uncertainties for the rate coefficients of many of the key reactions. The impact of these new data on the predicted abundances in TMC-1 and L134N is reported. Interstellar dust particles also influence the observed abundances of molecules in the interstellar medium. Their role is included in gas-grain, as distinct from gas-phase only, models. We review the methods for incorporating both accretion onto, and reactions on, the surfaces of grains in such models, as well as describing some recent experimental efforts to simulate and examine relevant processes in the laboratory. These efforts include experiments on the surface-catalysed recombination of hydrogen atoms, on chemical processing on and in the ices that are known to exist on the surface of interstellar grains, and on desorption processes, which may enable species formed on grains to return to the gas-phase.Comment: Accepted for publication in Space Science Review

    Dissociative recombination measurements of HCl+ using an ion storage ring

    Get PDF
    We have measured dissociative recombination of HCl+ with electrons using a merged beams configuration at the heavy-ion storage ring TSR located at the Max Planck Institute for Nuclear Physics in Heidelberg, Germany. We present the measured absolute merged beams recombination rate coefficient for collision energies from 0 to 4.5 eV. We have also developed a new method for deriving the cross section from the measurements. Our approach does not suffer from approximations made by previously used methods. The cross section was transformed to a plasma rate coefficient for the electron temperature range from T=10 to 5000 K. We show that the previously used HCl+ DR data underestimate the plasma rate coefficient by a factor of 1.5 at T=10 K and overestimate it by a factor of 3.0 at T=300 K. We also find that the new data may partly explain existing discrepancies between observed abundances of chlorine-bearing molecules and their astrochemical models.Comment: Accepted for publication in ApJ (July 7, 2013

    Non-detection of a pulsar-powered nebula in Puppis A, and implications for the nature of the radio-quiet neutron star RX J0822-4300

    Get PDF
    We report on a deep radio search for a pulsar wind nebula associated with the radio-quiet neutron star RX J0822-4300 in the supernova remnant Puppis A. The well-determined properties of Puppis A allow us to constrain the size of any nebula to less than 30 arcsec; however we find no evidence for such a source on any spatial scale up to 30 arcmin. These non-detections result in an upper limit on the radio luminosity of any pulsar-powered nebula which is three orders of magnitude below what would be expected if RX J0822-4300 was an energetic young radio pulsar beaming away from us, and cast doubt on a recent claim of X-ray pulsations from this source. The lack of a radio nebula leads us to conclude that RX J0822-4300 has properties very different from most young radio pulsars, and that it represents a distinct population which may be as numerous, or even more so, than radio pulsars.Comment: 5 pages, including 2 embedded EPS figures, uses emulateapj.sty. Accepted to ApJ Letters (minor changes made following referee's report

    A hierarchical model for aging

    Full text link
    We present a one dimensional model for diffusion on a hierarchical tree structure. It is shown that this model exhibits aging phenomena although no disorder is present. The origin of aging in this model is therefore the hierarchical structure of phase space.Comment: 10 pages LaTeX, 4 postscript-figures include
    corecore