5 research outputs found

    Analog Gaussian Function Circuit: Architectures, Operating Principles and Applications

    No full text
    This review paper explores existing architectures, operating principles, performance metrics and applications of analog Gaussian function circuits. Architectures based on the translinear principle, the bulk-controlled approach, the floating gate approach, the use of multiple differential pairs, compositions of different fundamental blocks and others are considered. Applications involving analog implementations of Machine Learning algorithms, neuromorphic circuits, smart sensor systems and fuzzy/neuro-fuzzy systems are discussed, focusing on the role of the Gaussian function circuit. Finally, a general discussion and concluding remarks are provided

    A Low-Power Analog Integrated Implementation of the Support Vector Machine Algorithm with On-Chip Learning Tested on a Bearing Fault Application

    No full text
    A novel analog integrated implementation of a hardware-friendly support vector machine algorithm that can be a part of a classification system is presented in this work. The utilized architecture is capable of on-chip learning, making the overall circuit completely autonomous at the cost of power and area efficiency. Nonetheless, using subthreshold region techniques and a low power supply voltage (at only 0.6 V), the overall power consumption is 72 μW. The classifier consists of two main components, the learning and the classification blocks, both of which are based on the mathematical equations of the hardware-friendly algorithm. Based on a real-world dataset, the proposed classifier achieves only 1.4% less average accuracy than a software-based implementation of the same model. Both design procedure and all post-layout simulations are conducted in the Cadence IC Suite, in a TSMC 90 nm CMOS process

    A Hand Gesture Recognition Circuit Utilizing an Analog Voting Classifier

    No full text
    Electromyography is a diagnostic medical procedure used to assess the state of a muscle and its related nerves. Electromyography signals are monitored to detect neuromuscular abnormalities and diseases but can also prove useful in decoding movement-related signals. This information is vital to controlling prosthetics in a more natural way. To this end, a novel analog integrated voting classifier is proposed as a hand gesture recognition system. The voting classifiers utilize 3 separate centroid-based classifiers, each one attached to a different electromyographic electrode and a voting circuit. The main building blocks of the architecture are bump and winner-take-all circuits. To confirm the proper operation of the proposed classifier, its post-layout classification results (91.2% accuracy) are compared to a software-based implementation (93.8% accuracy) of the same voting classifier. A TSMC 90 nm CMOS process in the Cadence IC Suite was used to design and simulate the following circuits and architectures

    Nanopower Integrated Gaussian Mixture Model Classifier for Epileptic Seizure Prediction

    No full text
    This paper presents a new analog front-end classification system that serves as a wake-up engine for digital back-ends, targeting embedded devices for epileptic seizure prediction. Predicting epileptic seizures is of major importance for the patient’s quality of life as they can lead to paralyzation or even prove fatal. Existing solutions rely on power hungry embedded digital inference engines that typically consume several µW or even mW. To increase the embedded device’s autonomy, a new approach is presented combining an analog feature extractor with an analog Gaussian mixture model-based binary classifier. The proposed classification system provides an initial, power-efficient prediction with high sensitivity to switch on the digital engine for the accurate evaluation. The classifier’s circuit is chip-area efficient, operating with minimal power consumption (180 nW) at low supply voltage (0.6 V), allowing long-term continuous operation. Based on a real-world dataset, the proposed system achieves 100% sensitivity to guarantee that all seizures are predicted and good specificity (69%), resulting in significant power reduction of the digital engine and therefore the total system. The proposed classifier was designed and simulated in a TSMC 90 nm CMOS process, using the Cadence IC suite
    corecore