1,524 research outputs found
An Investigation of the Large-scale Variability of the Apparently Single Wolf-Rayet Star WR 1
In recent years, much studies have focused on determining the origin of the
large-scale line-profile and/or photometric patterns of variability displayed
by some apparently single Wolf-Rayet stars, with the existence of an unseen
(collapsed?) companion or of spatially extended wind structures as potential
candidates. We present observations of WR 1 which highlight the unusual
character of the variations in this object. Our narrowband photometric
observations reveal a gradual increase of the stellar continuum flux amounting
to Delta v = 0.09 mag followed by a decline on about the same timescale (3-4
days). Only marginal evidence for variability is found during the 11 following
nights.
Strong, daily line-profile variations are also observed but they cannot be
easily linked to the photometric variations.
Similarly to the continuum flux variations, coherent time-dependent changes
are observed in 1996 in the centroid, equivalent width, and skewness of He II
4686. Despite the generally coherent nature of the variations, we do not find
evidence in our data for the periods claimed in previous studies. While the
issue of a cyclical pattern of variability in WR 1 is still controversial, it
is clear that this object might constitute in the future a cornerstone for our
understanding of the mechanisms leading to the formation of largely anisotropic
outflows in Wolf-Rayet stars.Comment: 11 pages, 9 figures, accepted for publication in Astronomy &
Astrophysic
Chiral persistent currents and magnetic susceptibilities in the parafermion quantum Hall states in the second Landau level with Aharonov-Bohm flux
Using the effective conformal field theory for the quantum Hall edge states
we propose a compact and convenient scheme for the computation of the periods,
amplitudes and temperature behavior of the chiral persistent currents and the
magnetic susceptibilities in the mesoscopic disk version of the Z_k parafermion
quantum Hall states in the second Landau level. Our numerical calculations show
that the persistent currents are periodic in the Aharonov-Bohm flux with period
exactly one flux quantum and have a diamagnetic nature. In the high-temperature
regime their amplitudes decay exponentially with increasing the temperature and
the corresponding exponents are universal characteristics of non-Fermi liquids.
Our theoretical results for these exponents are in perfect agreement with those
extracted from the numerical data and demonstrate that there is in general a
non-trivial contribution coming from the neutral sector. We emphasize the
crucial role of the non-holomorphic factors, first proposed by Cappelli and
Zemba in the context of the conformal field theory partition functions for the
quantum Hall states, which ensure the invariance of the annulus partition
function under the Laughlin spectral flow.Comment: 14 pages, RevTeX4, 7 figures (eps
Gradient-free quantum optimization on NISQ devices
Variational Quantum Eigensolvers (VQEs) have recently attracted considerable
attention. Yet, in practice, they still suffer from the efforts for estimating
cost function gradients for large parameter sets or resource-demanding
reinforcement strategies. Here, we therefore consider recent advances in
weight-agnostic learning and propose a strategy that addresses the trade-off
between finding appropriate circuit architectures and parameter tuning. We
investigate the use of NEAT-inspired algorithms which evaluate circuits via
genetic competition and thus circumvent issues due to exceeding numbers of
parameters. Our methods are tested both via simulation and on real quantum
hardware and are used to solve the transverse Ising Hamiltonian and the
Sherrington-Kirkpatrick spin model.Comment: 13 pages, 6 figures, comments welcome
Spins, Electromagnetic Moments, and Isomers of 107-129Cd
The neutron-rich isotopes of cadmium up to the N=82 shell closure have been
investigated by high-resolution laser spectroscopy. Deep-UV excitation at 214.5
nm and radioactive-beam bunching provided the required experimental
sensitivity. Long-lived isomers are observed in 127Cd and 129Cd for the first
time. One essential feature of the spherical shell model is unambiguously
confirmed by a linear increase of the 11/2- quadrupole moments. Remarkably,
this mechanism is found to act well beyond the h11/2 shell
The Sensitivity of Harassment to Orbit: Mass Loss from Early-Type Dwarfs in Galaxy Clusters
We conduct a comprehensive numerical study of the orbital dependence of
harassment on early-type dwarfs consisting of 168 different orbits within a
realistic, Virgo-like cluster, varying in eccentricity and pericentre distance.
We find harassment is only effective at stripping stars or truncating their
stellar disks for orbits that enter deep into the cluster core. Comparing to
the orbital distribution in cosmological simulations, we find that the majority
of the orbits (more than three quarters) result in no stellar mass loss. We
also study the effects on the radial profiles of the globular cluster systems
of early-type dwarfs. We find these are significantly altered only if
harassment is very strong. This suggests that perhaps most early-type dwarfs in
clusters such as Virgo have not suffered any tidal stripping of stars or
globular clusters due to harassment, as these components are safely embedded
deep within their dark matter halo. We demonstrate that this result is actually
consistent with an earlier study of harassment of dwarf galaxies, despite the
apparent contradiction. Those few dwarf models that do suffer stellar stripping
are found out to the virial radius of the cluster at redshift=0, which mixes
them in with less strongly harassed galaxies. However when placed on
phase-space diagrams, strongly harassed galaxies are found offset to lower
velocities compared to weakly harassed galaxies. This remains true in a
cosmological simulation, even when halos have a wide range of masses and
concentrations. Thus phase-space diagrams may be a useful tool for determining
the relative likelihood that galaxies have been strongly or weakly harassed.Comment: 17 pages, 13 figures, Accepted to MNRAS 8th September 201
Partition Functions of Non-Abelian Quantum Hall States
Partition functions of edge excitations are obtained for non-Abelian Hall
states in the second Landau level, such as the anti-Read-Rezayi state, the
Bonderson-Slingerland hierarchy and the Wen non-Abelian fluid, as well as for
the non-Abelian spin-singlet state. The derivation is straightforward and
unique starting from the non-Abelian conformal field theory data and solving
the modular invariance conditions. The partition functions provide a complete
account of the excitation spectrum and are used to describe experiments of
Coulomb blockade and thermopower.Comment: 42 pages, 3 figures; published version; minor corrections to sect.
4.
- …