5 research outputs found

    Inhibition of Aβ42 aggregation using peptides selected from combinatorial libraries

    Get PDF
    Increasing evidence suggests that the aggregation of the small peptide Aβ42 plays an important role in the development of Alzheimer’s disease. Inhibiting the initial aggregation of Aβ42 may be an effective treatment for preventing, or slowing, the onset of the disease. Using an in vivo screen based on the enzyme EGFP, we have searched through two combinatorially diverse peptide libraries to identify peptides capable of inhibiting Aβ42 aggregation. From this initial screen, three candidate peptides were selected and characterized. ThT studies indicated that the selected peptides were capable of inhibiting amyloid aggregation. Additional ThT studies showed that one of the selected peptides was capable of disaggregating preformed Aβ42 fibers

    An unusual cause of alveolar hemorrhage post hematopoietic stem cell transplantation: A case report

    Get PDF
    BACKGROUND: Hematopoietic stem cell transplantation is being increasingly used in cancer therapy. Diffuse alveolar hemorrhage, an early complication of stem cell transplant, results from bacterial, viral and fungal infections, coagulopathy, and engraftment syndrome, or can be idiopathic. Diffuse alveolar hemorrhage associated with Strongyloides stercoralis hyperinfection in stem cell transplant patients has been rarely reported. CASE PRESENTATION: We describe an unusual cause of alveolar hemorrhage post hematopoietic stem cell transplant due to Strongyloides hyperinfection. Therapy with parenteral ivermectin and thiabendazole was initiated but the patient deteriorated and died of respiratory failure and septic shock. CONCLUSION: Strongyloides stercoralis hyperinfection is an unusual cause of alveolar hemorrhage early after hematopoietic stem cell transplant with very high mortality

    SARS-CoV-2 B.1.617.2 Delta variant replication and immune evasion

    Get PDF
    Abstract: The B.1.617.2 (Delta) variant of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) was first identified in the state of Maharashtra in late 2020 and spread throughout India, outcompeting pre-existing lineages including B.1.617.1 (Kappa) and B.1.1.7 (Alpha)1. In vitro, B.1.617.2 is sixfold less sensitive to serum neutralizing antibodies from recovered individuals, and eightfold less sensitive to vaccine-elicited antibodies, compared with wild-type Wuhan-1 bearing D614G. Serum neutralizing titres against B.1.617.2 were lower in ChAdOx1 vaccinees than in BNT162b2 vaccinees. B.1.617.2 spike pseudotyped viruses exhibited compromised sensitivity to monoclonal antibodies to the receptor-binding domain and the amino-terminal domain. B.1.617.2 demonstrated higher replication efficiency than B.1.1.7 in both airway organoid and human airway epithelial systems, associated with B.1.617.2 spike being in a predominantly cleaved state compared with B.1.1.7 spike. The B.1.617.2 spike protein was able to mediate highly efficient syncytium formation that was less sensitive to inhibition by neutralizing antibody, compared with that of wild-type spike. We also observed that B.1.617.2 had higher replication and spike-mediated entry than B.1.617.1, potentially explaining the B.1.617.2 dominance. In an analysis of more than 130 SARS-CoV-2-infected health care workers across three centres in India during a period of mixed lineage circulation, we observed reduced ChAdOx1 vaccine effectiveness against B.1.617.2 relative to non-B.1.617.2, with the caveat of possible residual confounding. Compromised vaccine efficacy against the highly fit and immune-evasive B.1.617.2 Delta variant warrants continued infection control measures in the post-vaccination era

    Opioid use disorder

    No full text
    corecore